Abstract
Image recapture detection (IRD) is to distinguish real-scene images from the recaptured ones. Being able to detect recaptured images, a single image based counter-measure for rebroadcast attack on a face authentication system becomes feasible. Being able to detect recaptured images, general object recognition can differentiate the objects on a poster from the real ones, so that robot vision is more intelligent. Being able to detect recaptured images, composite image can be detected when recapture is used as a tool to cover the composite clues. As more and more methods have been proposed for IRD, an open database is indispensable to provide a common platform to compare the performance of different methods and to expedite further research and collaboration in the field of IRD.
This paper describes a recaptured image database captured by smart phone cameras. The cameras of smart phones represent the middle to low-end market of consumer cameras. The database includes real-scene images and the corresponding recaptured ones, which targets to evaluate the performance of image recapture detection classifiers as well as provide a reliable data source for modeling the physical process to obtain the recaptured images. There are three main contributions in this work. Firstly, we construct a challenging database of recaptured images, which is the only publicly open database up to date. Secondly, the database is constructed by the smart phone cameras, which will promote the research of algorithms suitable for consumer electronic applications. Thirdly, the contents of the real-scene images and the recaptured images are in pair, which makes the modeling of the recaptured process possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Korea identification inc., http://www.korea-id.co.kr/eng/index.html
XID technologies, http://www.xidtech.com/
Bai, J., Ng, T.-T., Gao, X., Shi, Y.-Q.: Is physics-based liveness detection truly possible with a single image? In: IEEE International Symposium on Circuits and Systems, ISCAS (2010)
Chen, C., Shi, Y.: Jpeg image steganalysis utilizing both intrablock and interblock correlations. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3029–3032 (2008)
Farid, H., Lyu, S.: Higher-order wavelet statistics and their application to digital forensics. In: IEEE Workshop on Statistical Analysis in Computer Vision (2003)
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: IEEE. CVPR 2004, Workshop on Generative-Model Based Vision (2004)
Gao, X., Ng, T.-T., Qiu, B., Chang, S.-F.: Single-view recaptured image detection based on physics-based features. In: IEEE International Conference on Multimedia & Expo, ICME (2010)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)
Ng, T.-T., Chang, S.-F., Hsu, Y.-F., Pepeljugoski, M.: Columbia photographic images and photorealistic computer graphics dataset. ADVENT Technical Report 205-2004-5 Columbia University (February 2005)
Ng, T.-T., Chang, S.-F., Hsu, Y.-F., Xie, L., Tsui, M.-P.: Physics-motivated features for distinguishing photographic images and computer graphics. In: ACM Multimedia (2005)
Yu, H., Ng, T.-T., Sun, Q.: Recaptured photo detection using specularity distribution. In: IEEE International Conference on Image Processing, ICIP (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, X., Qiu, B., Shen, J., Ng, TT., Shi, Y.Q. (2011). A Smart Phone Image Database for Single Image Recapture Detection. In: Kim, HJ., Shi, Y.Q., Barni, M. (eds) Digital Watermarking. IWDW 2010. Lecture Notes in Computer Science, vol 6526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18405-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-18405-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18404-8
Online ISBN: 978-3-642-18405-5
eBook Packages: Computer ScienceComputer Science (R0)