Skip to main content

Localization of 3D Anatomical Structures Using Random Forests and Discrete Optimization

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6533))

Included in the following conference series:

Abstract

In this paper we propose a method for the automatic localization of complex anatomical structures using interest points derived from Random Forests and matching based on discrete optimization. During training landmarks are annotated in a set of example volumes. A sparse elastic model encodes the geometric constraints of the landmarks. A Random Forest classifier learns the local appearance around the landmarks based on Haar-like 3D descriptors. During search we classify all voxels in the query volume. This yields probabilities for each voxel that indicate its correspondence with the landmarks. Mean-shift clustering obtains a subset of 3D interest points at the locations with the highest similarity in a local neighboorhood. We encode these points together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field. By solving the discrete optimization problem the most probable locations for each model landmark are found in the query volume. On a set of 8 hand CTs we show that this approach is able to consistently localize the model landmarks (finger tips, joints, etc) despite the complex and repetitive structure of the object.

This work was partly supported by the European Union FP7 Project KHRESMOI (FP7-257528), by the NSF IIS/CRCNS 0904625 grant, the NSF CAREER 0642971 grant, the NIH NCRR NAC P41-RR13218 and the NIH NIBIB NAMIC U54-EB005149 grant. Further supported by the Austrian National Bank grants COBAQUO (12537), BIOBONE (13468) and AORTAMOTION (13497).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergtholdt, M., Kappes, J., Schmidt, S., Schnörr, C.: A study of parts-based object class detection using complete graphs. Int. J. Comput. Vis. 87(1-2), 93–117 (2010)

    Article  MathSciNet  Google Scholar 

  2. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, pp. 105–112 (2001)

    Google Scholar 

  3. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE TPAMI 17(8), 790–799 (1995)

    Article  Google Scholar 

  4. Comaniciu, D., Meer, P., Member, S.: Mean shift: a robust approach toward feature space analysis. IEEE TPAMI 24, 603–619 (2002)

    Article  Google Scholar 

  5. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. PAMI 23(6), 681–685 (2001)

    Article  Google Scholar 

  6. Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in ct volumes. In: Proc. of MICCAI Workshop on Probabilistic Models for Medical Image Analysis (MICCAI-PMMIA) (2009)

    Google Scholar 

  7. Donner, R., Mičušik, B., Langs, G., Bischof, H.: Generalized Sparse MRF Appearance Models (2010)

    Google Scholar 

  8. Donner, R., Wildenauer, H., Bischof, H., Langs, G.: Weakly supervised group-wise model learning based on discrete optimization. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 860–868. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Essafi, S., Langs, G., Paragios, N.: Left ventricle segmentation using diffusion wavelets and boosting. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 919–926. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal on Computer Vision 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  11. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: Proc. ICCV (2005)

    Google Scholar 

  12. Langs, G., Peloschek, P., Donner, R., Reiter, M., Bischof, H.: Active Feature Models. In: Proc. ICPR, pp. 417–420 (2006)

    Google Scholar 

  13. Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE PAMI 22(3) (2000)

    Google Scholar 

  14. Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data (2009)

    Google Scholar 

  15. Statistics, L.B., Breiman, L.: Random forests. In: Machine Learning, pp. 5–32 (2001)

    Google Scholar 

  16. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, pp. 511–518 (2001)

    Google Scholar 

  17. Zhan, Y., Zhou, X.S., Peng, Z., Krishnan, A.: Active scheduling of organ detection and segmentation in whole-body medical images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 313–321. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Zheng, Y., Georgescu, B., Ling, H., Zhou, S., Scheuering, M., Comaniciu, D.: Constrained marginal space learning for efficient 3d anatomical structure detection in medical images, pp. 194–201 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Donner, R., Birngruber, E., Steiner, H., Bischof, H., Langs, G. (2011). Localization of 3D Anatomical Structures Using Random Forests and Discrete Optimization. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2010. Lecture Notes in Computer Science, vol 6533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18421-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18421-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18420-8

  • Online ISBN: 978-3-642-18421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics