Abstract
An efficient Monte Carlo method for multidimensional integration is proposed and studied. The method is based on Sobol’s sequences. Each random point in s-dimensional domain of integration is generated in the following way. A Sobol’s vector of dimension s (\(\it{\Lambda \Pi_{\tau}}\) point) is considered as a centrum of a sphere with a radius ρ. Then a random point uniformly distributed on the sphere is taken and a random variable is defined as a value of the integrand at that random point. It is proven that the mathematical expectation of the random variable is equal to the desired multidimensional integral. This fact is used to define a Monte Carlo algorithm with a low variance.
Numerical experiments are performed in order to study the quality of the algorithm depending of the radius ρ and regularity, i.e. smoothness of the integrand.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bradley, P., Fox, B.: Algorithm 659: Implementing Sobol’s Quasi Random Sequence Generator. ACM Trans. Math. Software 14(1), 88–100 (1988)
Dimov, I.T.: Monte Carlo Methods for Applied Scientists. World Scientific, London (2008)
Joe, S., Kuo, F.Y.: Constructing Sobol’ Sequences with Better Two-dimensional Projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)
L’Ecuyer, P., Lecot, C., Tuffin, B.: A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains. Operations Research 56(4), 958–975 (2008)
L’Ecuyer, P., Lemieux, C.: Recent Advances in Randomized Quasi-Monte Carlo Methods. In: Dror, M., L’Ecuyer, P., Szidarovszki, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic Publishers, Boston (2002)
Levitan, Y., Markovich, N., Rozin, S., Sobol’, I.: On Quasi-random Sequences for Numerical Computations. USSR Comput. Math. and Math. Phys. 28(5), 755–759 (1988)
Niederreiter, H.: Low-Discrepancy and Low-Dispersion Sequences. Journal of Number Theory 30, 51–70 (1988)
Saito, M., Matsumoto, M.: SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–622. Springer, Heidelberg (2008)
Sobol’, I.: Multidimensional Quadrature Formulae and Haar functions (in Russian). Nauka, Moscow (1969)
Sobol’, I.: Monte Carlo Numerical Methods (in Russian). Nauka, Moscow (1973)
Sobol’, I.: On the Systematic Search in a Hypercube. SIAM J. Numerical Analysis 16, 790–793 (1979)
Sobol’, I.: On Quadratic Formulas for Functions of Several Variables Satisfying a General Lipschitz Condition. USSR Comput. Math. and Math. Phys. 29(6), 936–941 (1989)
Sobol’, I.: Quasi - Monte Carlo Methods. In: Sendov, B.l., Dimov, I.T. (eds.) International Youth Workshop on Monte Carlo Methods and Parallel Algorithms 1989, pp. 75–81. World Scientific, Singapore (1990)
Weyl, H.: Ueber die Gleichverteilung von Zahlen mod Eins. Math. Ann. 77(3), 313–352 (1916)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimov, I., Georgieva, R. (2011). Monte Carlo Method for Numerical Integration Based on Sobol’s Sequences. In: Dimov, I., Dimova, S., Kolkovska, N. (eds) Numerical Methods and Applications. NMA 2010. Lecture Notes in Computer Science, vol 6046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18466-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-18466-6_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18465-9
Online ISBN: 978-3-642-18466-6
eBook Packages: Computer ScienceComputer Science (R0)