Skip to main content

Handling Environment Dynamics in Medial Axis Based Localization

  • Conference paper
Autonome Mobile Systeme 2003

Part of the book series: Informatik aktuell ((INFORMAT))

  • 235 Accesses

Abstract

For mobile robot localization we use a map based on the medial axis of free space. It combines the generality of occupancy grids with the efficiency of geometric feature maps. In contrast to these, no global consistent coordinate frame is needed and no special features like lines or corner points need to be present in the environment. Therefore the approach is very universal with respect to the size and type of environment.

However, the ordinary medial axis is not robust with respect to new objects in formerly free space. For our approach to be useful in dynamic environments, this decisive disadvantage of medial axis based localization needs to be overcome. This paper presents two solutions for this problem, after shortly sketching the map building and localization process of our MALoc system

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Kortenkamp, R Bonasso, R. Murphy (eds); Artificial intelligence and Mobile Robots: Case studies of successful Robot Systems. MIT Press 1998.

    Google Scholar 

  2. J.-S. Gutmann; W. Burgard, D. Fox, K. Konolige; An experimental comparison of localization methods. In Int. Conf. On Intelligent Robtos and Systems (IROS), 1998.

    Google Scholar 

  3. W. Rencken, W. Feiten, M. Soika; Large consistent geometric Landmark Maps. In Sensor Based Intelligent Robots, 2000.

    Google Scholar 

  4. S. Thrun, et al.; Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva. In International Journal of Robotics Research, Vol. 19, No. 11.

    Google Scholar 

  5. S. Thrun; Robotic Mapping: A Survey. In G. Lakemeyer and B. Nebel (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann 2003.

    Google Scholar 

  6. B. Kuipers; Representing Knowledge of Large-Scale Space. PhD thesis, MIT 1977.

    Google Scholar 

  7. B. Kuipers; The Spatial Semantic Hierarchiy. In Artificial Intelligence 119, 2000.

    Google Scholar 

  8. H. Blum; A transformation for extracting new descriptors of a shape. In Whaten-Dunn (ed.) Models for the Perseptiom of Speech and Visual Form, MIT Press 1967.

    Google Scholar 

  9. R. Ogniewicz, M. Ilg; Voronoi Skeletons: Theory and Applications, In Conference on Computer Vision and Pattern Recognition (CVPR), 1992.

    Google Scholar 

  10. Cuisenaire, B. Macq; Fast Euclidean morphological operators using local distance transformation by propagation. In 7th Intl Conference on Image Processings and its Applications, 1999.

    Google Scholar 

  11. D. Van Zwynsvoorde, T. Siméon, R. Alami. Building topological models for navigation in large scale environments. In International Conference on Robotics and Automation (ICRA), 2001.

    Google Scholar 

  12. D. Blanco, B. Boada, L. Moreno; Localization by Voronoi Diagrams Correlation. In International Conference on Robotics and Automation (ICRA), 2001.

    Google Scholar 

  13. D. Fox, S. Thrun, W. Burgard, F. Dellaert. Particle Filters for mobile Robot Localization. In A. Doucet, N. Fereitas, N. Gordon (eds.), Sequential Monte Carlo Methods in Practice, Springer 2000

    Google Scholar 

  14. S. Thrun, D. Fox, W. Burgard; Monte Carlo Localization With Mixture Proposal Distribution. In AAAI 7. Nat. Conf On AI, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiegert, M., Graeve, CM. (2003). Handling Environment Dynamics in Medial Axis Based Localization. In: Dillmann, R., Wörn, H., Gockel, T. (eds) Autonome Mobile Systeme 2003. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18986-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18986-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20142-7

  • Online ISBN: 978-3-642-18986-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics