Skip to main content

Unsupervised Quadratic Discriminant Embeddings Using Gaussian Mixture Models

  • Conference paper
Knowledge Discovery, Knowlege Engineering and Knowledge Management (IC3K 2009)

Abstract

We address in this paper the problem of finding low-dimensional representation spaces for clustered high-dimensional data. The new embedding space proposed here, called the cluster space, is an unsupervised dimension reduction method that relies on the estimation of a Gaussian Mixture Model (GMM) parameters. This allows to capture information not only among data points, but also among clusters in the same embedding space. Points are represented in the cluster space by means of their a posteriori probability values estimated using the GMMs. We show the relationship between the cluster space and the Quadratic Discriminant Analysis (QDA), thus emphasizing the discriminant capability of the representation space proposed. The estimation of the parameters of the GMM in high dimensions is further discussed. Experiments on both artificial and real data illustrate the discriminative power of the cluster space compared with other known state-of-the-art embedding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14 (2002)

    Google Scholar 

  2. Borg, I., Groenen, P.: Modern multidimensional scaling: Theory and applications. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  3. Demartines, P., Hérault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Network (1997)

    Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39 (1977)

    Google Scholar 

  5. Fraley, C., Raftery, A.: Model-based clustering, discriminant analysis and density estimation. Journal of American Statistical Association, 611–631 (2002)

    Google Scholar 

  6. Gupta, G., Ghosh, J.: Detecting seasonal trends and cluster motion visualization for very high-dimensional transactional data. In: Proceedings of the First International SIAM Conference on Data Mining (2001)

    Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  8. Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  9. Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T., Tenenbaum, J.: Parametric embedding for class visualization. Neural Computation (2007)

    Google Scholar 

  10. Iwata, T., Yamada, T., Ueda, N.: Probabilistic latent semantic visualization: topic model for visualizing documents. In: Proceedings of the 14th ACM SIGKDD, USA, pp. 363–371 (2008)

    Google Scholar 

  11. Kriegel, H.-P., Kroger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering and correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD) 3 (2009)

    Google Scholar 

  12. Lee, J., Lendasse, A., Verleysen, M.: A robust nonlinear projection method. In: Proceedings of ESANN 2000, Belgium, pp. 13–20 (2000)

    Google Scholar 

  13. MacQueen, J.B.: Some Methods for Classification and Analysis of MultiVariate Observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  14. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  15. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C-18 (1969)

    Google Scholar 

  16. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szekely, E., Bruno, E., Marchand-Maillet, S. (2011). Unsupervised Quadratic Discriminant Embeddings Using Gaussian Mixture Models. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds) Knowledge Discovery, Knowlege Engineering and Knowledge Management. IC3K 2009. Communications in Computer and Information Science, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19032-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19032-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19031-5

  • Online ISBN: 978-3-642-19032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics