Abstract
OAEP is a widely used public-key encryption scheme based on trapdoor permutations. Its security proof has been scrutinized and amended repeatedly. Fifteen years after the introduction of OAEP, we present a machine-checked proof of its security against adaptive chosen-ciphertext attacks under the assumption that the underlying permutation is partial-domain one-way. The proof can be independently verified by running a small and trustworthy proof checker and fixes minor glitches that have subsisted in published proofs. We provide an overview of the proof, highlight the differences with earlier works, and explain in some detail a crucial step in the reduction: the elimination of indirect queries made by the adversary to random oracles via the decryption oracle. We also provide—within the limits of a conference paper—a broader perspective on independently verifiable security proofs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Affeldt, R., Tanaka, M., Marti, N.: Formal proof of provable security by game-playing in a proof assistant. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 151–168. Springer, Heidelberg (2007)
Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci. Comput. Program. 74(8), 568–589 (2009)
Backes, M., Berg, M., Unruh, D.: A formal language for cryptographic pseudocode. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 353–376. Springer, Heidelberg (2008)
Backes, M., Dürmuth, M., Unruh, D.: OAEP is secure under key-dependent messages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 506–523. Springer, Heidelberg (2008)
Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistinguishability logic. In: 17th ACM Conference on Computer and Communications Security, CCS 2010. ACM, New York (2010)
Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)
Barthe, G., Grégoire, B., Zanella Béguelin, S.: Programming language techniques for cryptographic proofs. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 115–130. Springer, Heidelberg (2010)
Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: When and how should challenge-decryption be disallowed? Cryptology ePrint Archive, Report 2009/418 (2009)
Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)
Blanchet, B.: A computationally sound mechanized prover for security protocols. IEEE Trans. Dependable Sec. Comput. 5(4), 193–207 (2008)
Blanchet, B., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Computationally sound mechanized proofs for basic and public-key Kerberos. In: 15th ACM Conference on Computer and Communications Security, CCS 2008, pp. 87–99. ACM, New York (2008)
Boldyreva, A.: Strengthening security of RSA-OAEP. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 399–413. Springer, Heidelberg (2009)
Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. In: 15th ACM Conference on Computer and Communications Security, CCS 2008, pp. 371–380. ACM, New York (2008)
Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. J. Cryptology 17(2), 81–104 (2004)
Gonthier, G.: Formal Proof — The Four Colour Theorem. Notices of the AMS 55(11), 1382–1393 (2008)
Goubault-Larrecq, J.: Towards producing formally checkable security proofs, automatically. In: 21st IEEE Computer Security Foundations Symposium, CSF 2008, pp. 224–238. IEEE Computer Society, Los Alamitos (2008)
Hales, T.: Formal Proof. Notices of the AMS 55(11), 1370–1380 (2008)
Hales, T., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete and Computational Geometry 44(1), 1–34 (2010)
Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report 2005/181 (2005)
Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal verification of an OS kernel. In: 22nd ACM Symposium on Operating Systems Principles, SOSP 2009, pp. 207–220. ACM Press, New York (2009)
Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual machine and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)
Koblitz, N.: Another look at automated theorem-proving. J. Math. Cryptol. 1(4), 385–403 (2008)
Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, pp. 42–54. ACM, New York (2006)
Nowak, D.: A framework for game-based security proofs. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 319–333. Springer, Heidelberg (2007)
Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. of Comput. Secur. 6(1-2), 85–128 (1998)
Pointcheval, D.: Provable security for public key schemes. In: Advanced Courses on Contemporary Cryptology, ch. D, pp. 133–189. Birkhäuser, Basel (2005)
Rabin, M.O.: Digitalized signatures and public-key functions as intractable as factorization. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA (1979)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)
The Coq development team. The Coq Proof Assistant Reference Manual Version 8.2. Online (2009), http://coq.inria.fr
Zanella Béguelin, S., Grégoire, B., Barthe, G., Olmedo, F.: Formally certifying the security of digital signature schemes. In: 30th IEEE Symposium on Security and Privacy, S&P 2009, pp. 237–250. IEEE Computer Society, Los Alamitos (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S. (2011). Beyond Provable Security Verifiable IND-CCA Security of OAEP. In: Kiayias, A. (eds) Topics in Cryptology – CT-RSA 2011. CT-RSA 2011. Lecture Notes in Computer Science, vol 6558. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19074-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-19074-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19073-5
Online ISBN: 978-3-642-19074-2
eBook Packages: Computer ScienceComputer Science (R0)