Skip to main content

On Approximation Complexity of Metric Dimension Problem

  • Conference paper
Combinatorial Algorithms (IWOCA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6460))

Included in the following conference series:

Abstract

We study the approximation complexity of the Metric Dimension problem in bounded degree, dense as well as in general graphs. For the general case, we prove that the Metric Dimension problem is not approximable within \((\!1\!-\!\epsilon\!)\!\ln\!n\) for any \(\epsilon\!>\!0\), unless \(NP\!\subseteq\!DTIME(\!n^{\log\!\log\!n}\!)\), and we give an approximation algorithm which matches the lower bound. Even for bounded degree instances it is APX-hard to determine (compute) the exact value of the metric dimension which we prove by constructing an approximation preserving reduction from the bounded degree Vertex Cover problem.

The special case, in which the underlying graph is superdense turns out to be APX-complete. In particular, we present a greedy constant factor approximation algorithm for these kind of instances and construct a approximation preserving reduction from the bounded degree Dominating Set problem. We also provide first explicit approximation lower bounds for the Metric Dimension problem restricted to dense and bounded degree graphs.

The full version under http://theory.cs.uni-bonn.de/~schmied

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M., Ram, L.: Network Discovery and Verification. IEEE J. on Selected Areas in Communications 24, 2168–2181 (2006)

    Article  MATH  Google Scholar 

  2. Berman, P., DasGupta, B., Kao, M.: Tight approximability results for test set problems in bioinformatics. J. Comput. Syst. Sci. 71, 145–162 (2005)

    Article  MATH  Google Scholar 

  3. Cáceres, J., Hernando, C., Mora, M., Pelayo, I., Puertas, M., Seara, C., Wood, D.: On the Metric Dimension of Cartesian Products of Graphs. SIAM J. Disc. Math. 21, 423–441 (2007)

    Article  MATH  Google Scholar 

  4. Cáceres, J., Hernando, C., Mora, M., Pelayo, I., Puertas, M.: On the Metric Dimension of Infinite Graphs. Electr. Notes in Disc. Math. 35, 15–20 (2009)

    Article  MATH  Google Scholar 

  5. Chappell, G., Gimbel, J., Hartman, C.: Bounds on the metric and partition dimensions of a graph. Ars Combinatoria 88, 349–366 (2008)

    MATH  Google Scholar 

  6. Chartrand, G., Eroh, L., Johnson, M., Oellermann, O.: Resolvability in graphs and the metric dimension of a graph. Disc. Appl. Math. 105, 99–133 (2000)

    Article  MATH  Google Scholar 

  7. Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206, 1264–1275 (2008)

    Article  MATH  Google Scholar 

  8. Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)

    Article  MATH  Google Scholar 

  9. Fehr, M., Gosselin, S., Oellermann, O.: The metric dimension of Cayley digraphs. Disc. Math. 306, 31–41 (2006)

    Article  MATH  Google Scholar 

  10. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory on NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Halldórsson, B., Halldórsson, M., Ravi, R.: On the Approximability of the Minimum Test Collection Problem. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 158–169. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Harary, F., Melter, R.: On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)

    MATH  Google Scholar 

  13. Hernando, C., Mora, M., Pelayo, I., Seara, C., Wood, D.: Extremal Graph Theory for Metric Dimension and Diameter. Electr. Notes in Disc. Math. 29, 339–343 (2007)

    Article  MATH  Google Scholar 

  14. Karpinski, M., Schudy, W.: Linear time approximation schemes for the Gale-Berlekamp game and related minimization problems. In: Proc. 41st ACM STOC, pp. 313–322 (2009)

    Google Scholar 

  15. Karpinski, M., Zelikovsky, A.: Approximating Dense Cases of Covering Problems. In: Proc. DIMACS Workshop on Network Design: Connectivity and Facilities Location 1997, pp. 169–178 (1997); also published in ECCC TR97-004

    Google Scholar 

  16. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Disc. Appl. Math. 70, 217–229 (1996)

    Article  MATH  Google Scholar 

  17. Sebö, A., Tannier, E.: On Metric Generators of Graphs. Math. Oper. Res. 29, 383–393 (2004)

    Article  MATH  Google Scholar 

  18. Slater, P.: Leaves of trees. In: Hoffman, et al. (eds.) Southeastern Conf. on Combin., Graph Theory, and Comp., Congressus Numerantium, vol. 14, pp. 549–559. Utilitas Mathematica, Winnipeg (1975)

    Google Scholar 

  19. Slater, P.: Dominating and reference sets in graphs. J. Math. Phys. Sci. 22, 445–455 (1988)

    MATH  Google Scholar 

  20. Shapiro, H., Söderberg, S.: A combinatory detection problem. Amer. Math. Monthly 70, 1066–1070 (1963)

    Article  MATH  Google Scholar 

  21. Tomescu, I.: Discrepancies between metric dimension and partition dimension of a connected graph. Disc. Math. 308, 5026–5031 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hauptmann, M., Schmied, R., Viehmann, C. (2011). On Approximation Complexity of Metric Dimension Problem. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19222-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19221-0

  • Online ISBN: 978-3-642-19222-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics