Skip to main content

Recognition of Probe Ptolemaic Graphs

(Extended Abstract)

  • Conference paper
Combinatorial Algorithms (IWOCA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6460))

Included in the following conference series:

  • 688 Accesses

Abstract

Let \(\mathcal{G}\) denote a graph class. An undirected graph G is called a probe \(\mathcal{G}\) graph if one can make G a graph in \(\mathcal{G}\) by adding edges between vertices in some independent set of G. By definition graph class \(\mathcal{G}\) is a subclass of probe \(\mathcal{G}\) graphs. Ptolemaic graphs are chordal and induced gem free. They form a subclass of both chordal graphs and distance-hereditary graphs. Many problems NP-hard on chordal graphs can be solved in polynomial time on ptolemaic graphs. We proposed an O(nm)-time algorithm to recognize probe ptolemaic graphs where n and m are the numbers of vertices and edges of the input graph respectively.

This research is supported by National Science Council of Taiwan under grant no. NSC 95-2221-E-194-038-MY3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)

    Article  MATH  Google Scholar 

  2. Bayer, D., Le, V.B., de Ridder, H.N.: Probe threshold and probe trivially perfect graphs. Theoretical Computer Science 410, 4812–4822 (2009)

    Article  MATH  Google Scholar 

  3. Berry, A., Golumbic, M.C., Lipshteyn, M.: Recognizing Chordal Probe Graphs and Cycle-Bicolorable Graphs. SIAM J. Discrete Math. 21, 573–591 (2007)

    Article  MATH  Google Scholar 

  4. Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Recognition of probe cographs and partitioned probe distance hereditary graphs. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 267–278. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chandler, D.B., Guo, J., Kloks, T., Niedermeier, R.: Probe matrix problems: totally balanced matrices. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 368–377. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Partitioned probe comparability graphs. Theoretical Computer Science 396, 212–222 (2008)

    Article  MATH  Google Scholar 

  7. Chandler, D.B., Chang, M.-S., Kloks, A.J.J., Liu, J., Peng, S.-L.: On probe permutation graphs. Discrete Applied Mathematics 157, 2611–2619 (2009)

    Article  MATH  Google Scholar 

  8. Chang, G.J., Kloks, A.J.J., Liu, J., Peng, S.-L.: The PIGs full monty - a floor show of minimal separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Chang, M.-S., Hung, L.-J., Rossmanith, P.: Probe bipartite distance-hereditary graphs. In: Proceedings of NCS 2009: Workshop on Algorithms and Bioinformatics, pp. 16–27 (2009)

    Google Scholar 

  10. Chang, M.-S., Hung, L.-J., Rossmanith, P.: Probe distance-hereditary graphs. In: Proceedings of CATS 2010. CRPIT, vol. 109, pp. 55–64 (2010)

    Google Scholar 

  11. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19, 449–473 (1995)

    Article  MATH  Google Scholar 

  12. Howorka, E.: A characterization of ptolemaic graphs. Journal of Graph Theory 5, 323–331 (1981)

    Article  MATH  Google Scholar 

  13. Le, V.B., de Ridder, H.N.: Characterisations and linear-time recognition of probe cographs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 226–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. McConnell, R.M., Nussbaum, Y.: Linear-time recognition of probe interval graphs. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 349–360. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Zhang, P.E., Schon, A., Fischer, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS 10, 309–317 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chang, MS., Hung, LJ. (2011). Recognition of Probe Ptolemaic Graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19222-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19221-0

  • Online ISBN: 978-3-642-19222-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics