Skip to main content

Graphs of Separability at Most Two: Structural Characterizations and Their Consequences

  • Conference paper
Combinatorial Algorithms (IWOCA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6460))

Included in the following conference series:

  • 690 Accesses

Abstract

Graphs of separability at most k are defined as graphs in which every two non-adjacent vertices are separated by a set of at most k other vertices. For k ∈ {0,1}, the only connected graphs of separability at most k are complete graphs and block graphs, respectively. For k ≥ 3, graphs of separability at most k form a rich class of graphs containing all graphs of maximum degree k. Graphs of separability at most 2 generalize complete graphs, cycles and trees. We prove several characterizations of graphs of separability at most 2 and examine some of their consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

    Article  MATH  Google Scholar 

  2. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19, 247–253 (1989)

    Article  MATH  Google Scholar 

  3. Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10, 114 (1961)

    Google Scholar 

  4. Boliac, R., Lozin, V.: On the clique-width of graphs in hereditary classes. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 44–54. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Burlet, M., Fonlupt, J.: Polynomial algorithm to recognize a Meyniel graph. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. North-Holland Math. Stud., vol. 88, pp. 253–278. North-Holland, Amsterdam (1984)

    Chapter  Google Scholar 

  6. Chudnovsky, M.: The structure of bull-free graphs I–III (submitted)

    Google Scholar 

  7. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. of Math. 164(2), 51–229 (2006)

    Article  MATH  Google Scholar 

  8. Chudnovsky, M., Seymour, P.: Claw-free graphs. IV. Decomposition theorem. JCTB 98, 839–938 (2008)

    Article  MATH  Google Scholar 

  9. Conforti, M., Cornuéjols, G.: Graphs without odd holes, parachutes or proper wheels: a generalization of Meyniel graphs and of line graphs of bipartite graphs. JCTB 87, 300–330 (2003)

    Article  MATH  Google Scholar 

  10. Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: Even and odd holes in cap-free graphs. J. Graph Theory 30, 289–308 (1993)

    Article  MATH  Google Scholar 

  11. Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: A Mickey-mouse decomposition theorem. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 321–328. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  12. Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: Even-hole-free graphs. I. Decomposition theorem. J. Graph Theory 39, 6–49 (2002)

    Article  MATH  Google Scholar 

  13. Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: Universally signable graphs. Combinatorica 17, 67–77 (1997)

    Article  MATH  Google Scholar 

  14. Conforti, M., Gerards, B., Kapoor, A.: A theorem of Truemper. Combinatorica 20, 15–26 (2000)

    Article  MATH  Google Scholar 

  15. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34, 825–847 (2005)

    Article  MATH  Google Scholar 

  16. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 313–400. World Sci. Publishing, River Edge (1997)

    Chapter  Google Scholar 

  17. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

    Article  MATH  Google Scholar 

  18. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  19. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MATH  Google Scholar 

  20. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 117–128. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoret. Comput. Sci. 299, 719–734 (2003)

    MATH  Google Scholar 

  22. Gyárfás, A.: On Ramsey covering problems. Coll. Math. Soc. János Bolyai 10, 801–816 (1973)

    Google Scholar 

  23. Kloks, T., Müller, H., Vušković, K.: Even-hole-free graphs that do not contain diamonds: a structure theorem and its consequences. JCTB 99, 733–800 (2009)

    Article  MATH  Google Scholar 

  24. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Math. 126, 197–221 (2003)

    Article  MATH  Google Scholar 

  25. Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few P 4’s. International J. Foundations of Computer Science 10, 329–348 (1999)

    Article  MATH  Google Scholar 

  26. Miller, G.L.: Isomorphism of graphs which are pairwise k-separable. Information and Control 56, 21–33 (1983)

    Article  MATH  Google Scholar 

  27. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596 (1992)

    Article  MATH  Google Scholar 

  28. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232 (1985)

    Article  MATH  Google Scholar 

  29. Trotignon, N., Vušković, K.: A structure theorem for graphs with no cycle with a unique chord and its consequences. J. Graph Theory 63, 31–67 (2009)

    Article  MATH  Google Scholar 

  30. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6, 505–517 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cicalese, F., Milanič, M. (2011). Graphs of Separability at Most Two: Structural Characterizations and Their Consequences. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19222-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19221-0

  • Online ISBN: 978-3-642-19222-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics