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Abstract. In this paper we obtain parameterized subexponential-time
algorithms for p-Kemeny Aggregation (p-KAGG) — a problem in
social choice theory — and for p-One-Sided Crossing Minimization

(p-OSCM) – a problem in graph drawing (see the introduction for def-

initions). These algorithms run in time O
∗(2O(

√
k log k)), where k is the

parameter, and significantly improve the previous best algorithms with
running times O

∗(1.403k) and O
∗(1.4656k), respectively. We also study

natural “above-guarantee” versions of these problems and show them to
be fixed parameter tractable. In fact, we show that the above-guarantee
versions are equivalent to a weighted variant of p-Directed Feedback

Arc Set. Our results for the above-guarantee version of p-KAGG reveal
an interesting contrast. We show that when the number of “votes” in the
input to p-KAGG is odd the above guarantee version can still be solved
in time O∗(2O(

√
k log k)), while if it is even then the problem cannot have

a subexponential time algorithm unless the exponential time hypothesis
fails (equivalently, unless FPT=M[1]).

1 Introduction

In this paper we study problems from two different areas of algorithmics: p-
Kemeny Aggregation (p-KAGG) — a problem in computational social choice
theory — and p-One-Sided Crossing Minimization (p-OSCM) — a problem
in graph drawing — in the realm of parameterized complexity.

Kemeny Aggregation: Preference lists are extensively used in social science sur-
veys and voting systems to capture information about choice. In many such
scenarios there arises the need to combine the data represented by many lists
into a single list which reflects the opinion of the surveyed group as much as
possible. The p-KAGG problem was introduced by Kemeny [24, 25] to abstract
out the problem of combining many preference lists into one. This problem ap-
pears in a variety of applications, such as in breeding problems in agronomy [21].



In p-KAGG we are given a set of permutations (also called votes) over a set of
alternatives (also called candidates), and a positive integer k, and are asked for a
permutation π of the set of the set of candidates, called an optimal aggregation,
such that the sum of the Kendall-Tau distances (KT -distances) of π from all
the votes is at most k. The KT -distance between two permutations π1 and π2

is the number of pairs of candidates that are ordered differently in the two per-
mutations and is denoted by KT -dist(π1, π2). The problem is known to be NP-
complete [5] and admits polynomial time approximation schemes (PTASs) [26].
Betzler et al. [6] considered this problem from the point of view of parameter-
ized algorithms and obtained an algorithm that runs in time O∗(1.53k) 5. More
recently Simjour [30] obtained an algorithm for the problem that runs in time
O∗(1.403k).

One Sided Crossing Minimization: The graph drawing problem that we are
interested in is the p-OSCM problem, which is a key ingredient of the well-known
“Sugiyama approach” to layered graph drawing [31]. An input to this problem
consists of a bipartite graph G = (V1, V2, E), a permutation π of V1, and a
positive integer k. The vertices of V1 are placed on a line, also called a layer, in
the order induced by π. The objective is to check whether there is a permutation
πm of V2 such that, when the vertices of V2 are placed on a second layer parallel
to the first one in the order induced by πm, then drawing a straight-line segment
for each edge in E will introduce no more than k pairwise edge crossings. This
seemingly simple problem is NP-complete [18], even on sparse graphs [28].

The study of the parameterized algorithmics of graph drawing problems was
initiated by Dujmović et al [12], and several new generic results were later ob-
tained by Dujmović and others [13]. Dujmović and Whitesides [16] investigated
the p-OSCM problem and obtained an algorithm for this problem which runs
in time O∗(1.6182k). This was later improved to O∗(1.4656k) by Dujmović et
al. [15]. There has been a similar race to obtain better approximation algorithms
for the problem. To the best of our knowledge, the current best approximation
factor for p-OSCM is 1.4664, due to Nagamochi [29].

Our Results. We obtain O∗(2O(
√

k log k))-time algorithms for both p-KAGG and
p-OSCM. These significantly improve the previous best algorithms with run-
ning times O∗(1.403k) and O∗(1.4656k), respectively. Both of our algorithms
are based on modeling these problems as the p-Weighted Directed Feed-
back Arc Set (p-WDFAS) problem. In p-WDFAS we are given a directed
(multi)graph D = (V,A), a weight function w : A → R

+ and a positive integer
k, and the objective is to find a set of arcs F ⊆ A of total weight at most k

such that deleting F from D makes D a directed acyclic graph; such an F is
called a feedback arc set of D. Both p-KAGG and p-OSCM have been modeled as
p-WDFAS in earlier work as well [1, 30, 31]; the novelty in our modeling is that it
allows us to work with p-WDFAS on “tournament–like” structures. We call this

5 The O
∗ notation suppresses polynomial terms in the expression.
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specialized problem p-FAST (parameterized Feedback Arc Set on Tournament-
like structures). A tournament is a digraph in which between every two vertices
there is exactly one arc. By a tournament-like structure, we mean a directed
(multi)graph on n vertices that contains a tournament on n vertices as a sub-
graph. Our modeling allows us to use the chromatic-coding technique recently
developed by Alon et al. [3], which they used to obtain the first subexponential
time algorithm for p-WDFAS on tournaments.

We also study natural “above-guarantee” versions of these problems and show
them to be fixed parameter tractable. We show that the above-guarantee versions
of p-KAGG (A-p-KAGG) and p-OSCM(A-p-OSCM) are both equivalent to p-
WDFAS and hence both have algorithms that run in time O∗(2O(k log k)) [9]. A
finer analysis of A-p-KAGG reveals an interesting contrast in its running time:
if the number of votes in the input to p-KAGG is odd, then A-p-KAGG can still

be solved in time O∗(2O(
√

k log k)), while if it is even, then the problem cannot
have any subexponential-time algorithm unless the exponential time hypothesis
(ETH) is false [22], or equivalently [19], unless FPT=M[1].

It is also worth mentioning that our reduction from p-OSCM to p-WDFAS
on tournaments implies a PTAS for the graph drawing problem. To summarize,
we analyze a common feature of p-KAGG and p-OSCM to provide new insights
and findings of interest to both the Graph Drawing community and the Social
Choice community.

2 Preliminaries

A parameterized problem Π is a subset of Γ ∗ × N, where Γ is a finite alpha-
bet. An instance of a parameterized problem is a tuple (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed-parameter
tractability (FPT) which means, for a given instance (x, k), decidability in time
O(f(k) · p(|x|)), where f is an arbitrary function of k and p is a polynomial in
the input size.

Let Π1,Π2 be two parameterized problems. A parameterized reduction from
Π1 to Π2 is an algorithm that takes an instance (x, k) of Π1 as input, runs in
time O(f(k) · p(|x|)), and outputs an instance (y, ℓ) of Π2 such that ℓ is some
function of k alone and (x, k) is a YES instance of Π1 if and only if (y, ℓ) is a
YES instance of Π2.

A tournament is a directed graph in which there is exactly one directed
arc between every two vertices. A feedback arc set in a tournament is a set of
arcs whose reversal results in a DAG. A tournament-like graph is a directed
(multi)graph on n vertices, for some n ∈ N, which contains a tournament on n

vertices as a subgraph.
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3 FPT Algorithms for p-KAGG

Let S be a finite set, and let π1, π2 be two permutations of S. For u, v ∈ S, we
define

dπ1

π2
(u, v) =

{

0 if π1 and π2 rank u and v in the same order

1 otherwise

The Kendall-Tau distance (KT-distance) of π1 and π2 is defined as:
KT -dist(π1, π2) =

∑

{u,v}⊆S dπ1

π2
(u, v).

Let C be a set of candidates and V a set of votes over C. For any permutation
r of C, the Kemeny Score of r with respect to V is defined as: KS(r, V ) =
∑

π∈V KT -dist(r, π). Observe that

KS(r, V ) =
∑

π∈V

KT -dist(r, π) =
∑

π∈V

∑

{u,v}⊆C

dr
π(u, v) =

∑

{u,v}⊆C

∑

π∈V

dr
π(u, v)

(1)

3.1 Parameterized Reduction from p-KAGG to p-WDFAS

We now describe a parameterized reduction from p-KAGG to p-WDFAS, briefly
mentioned by Betzler et al. [6], which runs in polynomial time and takes the
parameter from k to k. Let (C, V, k) be an instance of p-KAGG. In what follows,
we assume without loss of generality that |V | ≥ 1. We construct a digraph G

such that (C, V, k) is a YES instance of p-KAGG if and only if G has a feedback
arc set of weight at most k.

We set the vertex set of G to be the set C of candidates. For each vote πi ∈ V

and for each pair of vertices (u, v) of G, we add a new arc with weight 1 from u

to v in G if and only if u appears before v in πi (equivalently, when u is preferred
over v by πi). This completes the construction; the parameter is k.

Fix a vote πi ∈ V . For each pair of candidates u, v ∈ C, πi prefers exactly
one of these candidates over the other. Thus, for any two vertices u, v of G, each
vote contributes exactly one arc between u and v in G. As a consequence, we
have:

Observation 1 Let G be the digraph constructed from an instance (C, V, k) of
p-KAGG as described above. For any two vertices u, v of G, let i be the number
of arcs in G from u to v, and j the number of arcs from v to u. Then i+j = |V |.

The next two claims show that the reduction is sound.

Claim 1. Let (C, V, k) be a YES instance of p-KAGG, and let G be the digraph
constructed from (C, V, k) as described above. Then G has a feedback arc set of
weight at most k.
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Proof. Since (C, V, k) is a YES instance of p-KAGG, there exists a permutation
r of the set C such that

∑

π∈V KT -dist(r, π) ≤ k. For u, v ∈ V (G), let ruv be
the set of arcs in G between u and v that are oriented contrary to the direction
implied by r. That is, if u appears before v in r, then ruv consists of all arcs from
v to u in G; if u appears after v in r, then ruv consists of all arcs from u to v

in G. Using Equation 1, we get
∑

{u,v}⊆C

∑

π∈V dr
π(u, v) ≤ k. By construction,

this implies
∑

{u,v}⊆V (G) |ruv| ≤ k.
That is, there are at most k arcs in G, each of weight exactly 1, that are

oriented contrary to the directions implied by r. Reversing these arcs, we get a
digraph G′ in which every arc is oriented according to the direction implied by
r. Since r is a permutation of V (G) = V (G′), it follows that G′ is acyclic. ⊓⊔

Claim 2. Let G be the digraph constructed from an instance (C, V, k) of p-
KAGG as described above. If G has a feedback arc set S of weight at most k,
then (C, V, k) is a YES instance of p-KAGG.

Proof. Note that since each arc in G has weight exactly 1, S contains exactly k

arcs. Consider the DAG G′ obtained from G by reversing the arcs in S. Note that
this operation preserves the number of arcs between any pair of vertices. From
Observation 1, and since G′ is a DAG, between each pair u, v of vertices of G′

there are exactly |V | arcs, all of which are in the same direction. The arcs of G′

thus define a permutation r of C, where for any u, v ∈ C, u appears before v in r

if and only if there is an arc (in fact, |V | arcs) from u to v in G′. For u, v ∈ V (G),
let ruv be the set of arcs between u and v in G that are oriented contrary to the
direction implied by r. Then ∪{u,v}⊆V (G)ruv = S,

∑

{u,v}⊆V (G) |ruv| = |S| ≤ k,

and from this and the construction we get
∑

{u,v}⊆C

∑

π∈V dr
π(u, v) ≤ k. From

Equation 1 it follows that KS(r, V ) ≤ k, and so (C, V, k) is a YES instance of
p-KAGG. ⊓⊔

The above reduction can clearly be done in polynomial time, and the number
of vertices in the reduced instance (G, k) is equal to the number of candidates
|C| in the input instance (C, V, k). Further, the reduced instance has at least
one arc (in fact, exactly |V | arcs) between every pair of vertices. Let H be the
edge-weighted digraph obtained from G by replacing parallel arcs with single
weighted arcs in the natural way. That is, if there are i > 0 arcs from u to v in
G, then H contains a single arc of weight i from u to v. It is easy to verify that
H has a feedback arc set of weight at most k if and only if G has a feedback arc
set of weight at most k. Hence from Claims 1 and 2 we have

Lemma 1. Given an instance (C, V, k) of p-KAGG, we can construct, in poly-
nomial time, an equivalent instance (G, k) of p-WDFAS where G is a tournament-
like graph and |V (G)| = |C|.

3.2 A Subexponential FPT Algorithm for p-KAGG

Our algorithm is based on the observation that the algorithm of Alon et al. [3] for
p-WDFAS on tournaments also works for tournament-like graphs. The algorithm
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presented in [3] starts by preprocessing the instance and obtains an equivalent
instance with at most O(k2) vertices in polynomial time. That is, given a tourna-
ment T and a positive integer k, in polynomial time the preprocessing algorithm
either concludes that T does not have a feedback arc set of weight at most k or
finds a new tournament T ′ with O(k2) vertices and k′ ≤ k such that the original
tournament T has a feedback arc set of weight at most k, if and only if T ′ has a
feedback arc set of weight at most k′. This preprocessing allows them to assume
that the instance where they actually apply the subexponential time algorithm
is of size O(k2) only, which is integral to their time analysis. Their preprocessing
can also be applied to tournamnet-like graphs by allowing both directed cycles of
length two and triangles in the reduction rules proposed in [3, Lemma 1]. So we
always first apply these preprocessing rules and obtain a tournament-like graph
on O(k2) vertices. Let the preprocessed tournament-like graph be T = (V,A).

To obtain our algorithm we also use universal coloring families introduced
in [3]. For integers m, k and r, a family F of functions from [m] to [r] is called
a universal (m, k, r)-coloring family if for any graph G on the set of vertices [m]
with at most k edges, there exists an f ∈ F which is a proper vertex coloring of
G. The following result gives a bound on the size of universal coloring families.

Proposition 1. [3] For any n > 10k2 there exists an explicit universal

(n, k,O(
√

k))-coloring family F of size |F| ≤ 2O(
√

k log k) log n.

We enumerate each function in the universal coloring family and then color
the vertices of T with these functions. Observe that since the number of arcs
possible in the solution is at most k, there exists a function f ∈ F such that no
end-points of the arc in the solution is colred with same color, that is, no arc of
the solution is monochromatic. Now using the dynamic programming algorithm
proposed in [3, Lemma 3] we can find a feedback arc set of weight at most k of

T , if there exists one, in time O(2O(
√

k log k)). This yields the following theorem.

Theorem 1. The p-Kemeny Aggregation problem with n candidates can be

solved in 2O(
√

k log k) + nO(1) time.

This is a significant improvement over the previous best known algorithm for
p-Kemeny Aggregation which runs in O∗(1.403k) time [30].

3.3 FPT Algorithms for A-p-KAGG

Consider an instance of the p-KAGG problem. Let π be any permutation of the
candidate set C, let V be the set of all votes and let KS(π, V ) denote the sum
of the KT -distances of π from all the votes in the set V . Suppose A and B are
two candidates in the input, and let i votes prefer A over B and j votes prefer B

over A. Clearly, the pair {A,B} contributes at least min(i, j) to KS(π, V ). For
{u, v} ⊆ C, let I(u, v) (respectively J(u, v)) be the number of votes that rank
u before v (respectively v before u), and let g =

∑

{u,v}⊆C min{I(u, v), J(u, v)}.
Then KS(π, V ) ≥ g, and so in the natural above-guarantee version of p-KAGG,
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which we call A-p-KAGG, we ask for a permutation π of C such that KS(π, V ) ≤
g + k.

We now describe a reduction from A-p-KAGG to p-WDFAS, originally due
to Dwork et al. [17]. When the number of votes in the input instance is odd
(A-p-KAGG(odd)), the reduced instance is a tournament with positive integral
edge weights. When the number of votes is even (A-p-KAGG(even)), the reduced
instance is not necessarily a tournament. In both cases, the parameter goes from
k to k. That is, the reduction takes A-p-KAGG(odd) to p-WDFAS on tourna-
ments, and A-p-KAGG(even) to p-WDFAS in general digraphs, in both cases
preserving the parameter. Together with the subexponential FPT algorithm of
Alon et al. [3] for p-WDFAS on tournaments, this implies a subexponential FPT
algorithm for A-p-KAGG(odd). In the next subsection we describe a parameter-
ized reduction from p-WDFAS to A-p-KAGG(even) in which the parameter goes
from k to 2k. This implies that A-p-KAGG(even) does not have a subexponential
FPT algorithm unless the exponential time hypothesis is false.

Let (C, V, k) be an instance of A-p-KAGG. We construct an instance (H, k)
of p-WDFAS in two stages, as follows.

Stage 1. We construct a digraph G exactly as in the previous reduction. We set
the vertex set of G to be the set C of candidates. For each vote πi ∈ V and for
each pair of vertices (u, v) of G, we add a new arc of weight 1 from u to v in G

if and only if u appears before v in πi (equivalently, when u is preferred over v

by πi).

Stage 2. We now prune the “above-guarantee” arcs of G. We process every two-
vertex subset {u, v} of G as follows: Let there be a total of i arcs from u to v

and j arcs from v to u in H. Assume without loss of generality that i ≥ j. We
replace all the arcs between u and v by a single arc of weight i − j from u to v.
If i − j = 0, then we just remove all the arcs between u and v, and do not add
any arc to replace them. We repeat this for every 2-subset of vertices of G to
obtain a digraph H with integer-weighted arcs. (H, k) is the desired instance of
p-WDFAS.

Suppose the number |V | of votes in the input instance (C, V, k) is odd. Then,
with the same notation as above, i + j = |V | is odd for each 2-subset {u, v} of
G (Observation 1), and so i > j. Thus there is exactly one arc between every
two vertices of H, and so H is a tournament. If |V | is even, then it is possible
that i = j for some {u, v} ⊆ V (G), and so in H there will not be any arc
between u and v. Hence when |V | is odd, H is not necessarily a tournament or
a tournament-like graph.

Dwork et al. [17] show that the above reduction is sound; see also Mahajan
et al. [27]:

Lemma 2. [17, 27] Let (H, k) be the instance of p-WDFAS obtained from an
instance (C, V, k) of A-p-KAGG as described above. Then (H, k) is a YES in-
stance of p-WDFAS if and only if (C, V, k) is a YES instance of A-p-KAGG.

7



The fastest known FPT algorithm for p-WDFAS runs in O∗(2O(k log k))
time [9], and the fastest known FPT algorithm for p-WDFAS on tournaments

runs in 2O(
√

k log k) + nO(1) time [3]. Hence from Lemma 2 we get

Theorem 2. The A-p-KAGG problem with n candidates can be solved in

2O(
√

k log k) + nO(1) time when the number of votes is odd, and in O∗(2O(k log k))
time when the number of votes is even.

3.4 A Lower Bound for A-p-KAGG(even)

We now argue that the A-p-KAGG(even) problem does not have a subexponen-
tial FPT algorithm unless the exponential time hypothesis (ETH) is false. To
see this, consider the following sequence of two reductions:

Vertex Cover → Directed Feedback Arc Set → A-p-KAGG

The first reduction is due to Karp [23], and the second is due to Dwork et
al. [17, Theorem 14]. This sequence of reductions take an input instance (G, k)
of Vertex Cover where G is a graph on n vertices and m edges and k ≤ n is a
positive integer, and outputs an instance (C, V, 2k) of A-p-KAGG(even) where
|C| = 3n + 2m, |V | = 4, and the guarantee is g = 2(

(

2n

2

)

+
(

n+2m

2

)

+ n + 2m);
see the references for details. Suppose A-p-KAGG(even) has an algorithm that
runs in time O∗(2o(k)). Since k = O(n) throughout the reduction, we can then
use this algorithm to solve Vertex Cover in O∗(2o(n)) time: We first apply
the above sequence of reductions and then apply the supposed subexponential
FPT algorithm for A-p-KAGG(even) to the resulting instance. This would in
turn imply that ETH is false [22], and so we have

Theorem 3. The A-p-KAGG problem with an even number of votes cannot be
solved in O∗(2o(k)) time unless ETH is false.

4 FPT Algorithms for p-OSCM

Let (G = (V1, V2, E), π, k) be an instance of p-OSCM. In what follows, we assume
without loss of generality that in G, every vertex in V2 has at least one neighbor
in V1.

4.1 Parameterized Reduction from p-OSCM to p-WDFAS

We now describe a parameterized reduction from p-OSCM to p-WDFAS which
runs in polynomial time and takes the parameter from k to k. Let (G = (V1, V2, E),
π, k) be an instance of p-OSCM. We construct a digraph H as follows: H has
one vertex for each vertex of V2. For {u, v} ⊆ V2, we draw the arc uv with weight
Cuv if Cuv > 0.
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Claim 3. Let (G = (V1, V2, E), π, k) be an instance of p-OSCM, and let H be the
digraph obtained from this instance as described above. (G = (V1, V2, E), π, k)
is a YES instance of p-OSCM if and only if H has a feedback arc set of weight
at most k.

Proof. Suppose (G = (V1, V2, E), π, k) is a YES instance of p-OSCM, and let πm

be a permutation of V2 that witnesses this fact. Place the vertices of H on a line
in the order induced by πm: u is to the left of v if and only if u comes before v

in πm. From the construction it is clear that the sum of the weights of the arcs
in H that go from left to right is at most k, and so these arcs together form a
feedback arc set of H of weight at most k.

Now suppose S is a minimal feedback arc set of H of weight at most k. Let
π′ be the unique permutation of V2 such that if we place the vertices of H on
a line in the order specified by π′, then the arcs that go from left to right are
exactly the arcs in S. It is easily verified that if the vertices of V2 are placed on
the second layer in the order specified by π′, then the number of crossings will
be at most k. ⊓⊔

The above reduction can clearly be done in polynomial time, and the graph
H in the reduced instance (H, k) has |V2| vertices, where the p-OSCM instance is
(G = (V1, V2, E), π, k). Further, it is not difficult to see that the reduced instance
has at least one arc between every pair of vertices. Hence from Claim 3 we have

Lemma 3. Given an instance (G = (V1, V2, E), π, k) of p-OSCM, we can con-
struct, in polynomial time, an equivalent instance (H, k) of p-WDFAS where H

is a tournament-like graph and |V (H)| = |V2|.

4.2 A Subexponential FPT Algorithm for p-OSCM

From Lemma 3, and using the same argument as in Section 3.2, we get

Theorem 4. The p-One-Sided Crossing Minimization problem can be solved

in 2O(
√

k log k) + nO(1) time, where n is the number of vertices in the layer that
is not fixed.

4.3 Lower and Upper Bounds for A-p-OSCM

Let (G = (V1, V2, E), π, k) be an instance of p-OSCM. For two vertices u, v ∈ V2,
let Cuv denote the number of crossings of edges incident to u with edges incident
to v, when u appears before v in the second layer. It is known [16] that for a
given graph G and a fixed ordering π of the vertices of V1, Cuv is a constant
and can be computed in polynomial time. It is also known that the minimum
possible number of crossings is g =

∑

{u,v}⊆V2
min(Cuv, Cvu) [16]. So in the

natural above-guarantee version of p-OSCM, which we call A-p-OSCM, we ask
for a permutation π of V2 such that the number of crossings induced by π is at
most g + k.
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Given an instance (G = (V1, V2, E), π, k) of p-OSCM, the well-known penalty
graph construction of Sugiyama et al. [31] constructs a arc-weighted digraph H

with V2 as the vertex set, and there is an arc in H from u to v with weight
Cvu − Cuv if Cuv < Cvu. It is easy to verify that there is a permutation πm of
V2 such that the number of crossings induced by πm is at most g + k if and only
if H has a feedback arc set of weight at most k. Thus, using the algorithm in [9]
we have

Theorem 5. The A-p-OSCM problem can be solved in O∗(2O(k log k)) time.

Muñoz et al. describe a reduction from Directed Feedback Arc Set to
p-OSCM that in fact is a parameterized reduction from Directed Feedback
Arc Set (where the parameter k is the solution size) to A-p-OSCM which
takes the parameter from k to 2k [28, Proof of Theorem 1]. Hence by a similar
argument as in Section 3.4 we have

Theorem 6. The A-p-OSCM problem cannot be solved in O∗(2o(k)) time unless
ETH is false.

5 Conclusion and Future Work

In this paper we modeled two problems, from two different domains, as the
weighted feedback arc set problem on tournament-like structures. This allowed
us to utilize the recently developed technique of chromatic-coding [3] to obtain

subexponential-time algorithms, that is, algorithms that run in time O∗(c
√

k log k),
for p-Kemeny Aggregation and p-One-Sided Crossing Minimization. The
running time of these algorithms might be seen as a breakthrough compared to
the hitherto best published algorithms, which had running times of the form
roughly O∗(1.5k). It is worth mentioning that apart from problems on graphs of
bounded genus, only very few problems are known to have running times of the

form O∗(c
√

k) [2, 10, 11].
Our approach also allowed us to show that the above-guarantee versions of

these problems are fixed parameter tractable with algorithms having running
times of the form O∗(ck log k). We also show that the above-guarantee versions
of these problems cannot have algorithms that run in O∗(2o(k)) time, unless the
well known exponential time hypothesis fails.

We believe that our approach will generalize to other related problems con-
sidered in the literature. We cite a few concrete examples in the following.

– Çakiroglu et al. [8] considered drawing graphs with edge weights. If two edges
cross, then the crossing receives as a weight the product of both edge weights
involved. The overall weight of a crossing is then the sum of all respective
crossing weights, and the goal is to minimize this weight.

– Forster [20] considered the so-called constraint variant where the ordering
of some of the vertices of the free layer is already fixed (as part of the
input). This can be clearly modeled by the so-called positive weighted
completion of an ordering (PWCO) as studied in [14]. There, also an
FPT result was announced, with a running time of O∗(1.52k).
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– In radial drawings of graphs, also the restricted (NP-complete) variant called
radial one-sided two-level crossing minimization has been consid-
ered [4].

It also might be interesting to consider the crossing minimization variant of
these problems that attempts to minimize the maximum number of crossings
per edge as proposed in [7] from the viewpoints of fixed parameter tractability
and of approximability.
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