Skip to main content

Compressive Evaluation in Human Motion Tracking

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Abstract

The powerful theory of compressive sensing enables an efficient way to recover sparse or compressible signals from non-adaptive, sub-Nyquist-rate linear measurements. In particular, it has been shown that random projections can well approximate an isometry, provided that the number of linear measurements is no less than twice of the sparsity level of the signal. Inspired by these, we propose a compressive anneal particle filter to exploit sparsity existing in image-based human motion tracking. Instead of performing full signal recovery, we evaluate the observation likelihood directly in the compressive domain of the observed images. Moreover, we introduce a progressive multilevel wavelet decomposition staged at each anneal layer to accelerate the compressive evaluation in a coarse-to-fine fashion. The experiments with the benchmark dataset HumanEvaII show that the tracking process can be significantly accelerated, and the tracking accuracy is well maintained and comparable to the method using original image observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E.J., Romberg, J.K., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23, 969–985 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine 25, 83–91 (2008)

    Article  Google Scholar 

  6. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)

    Article  Google Scholar 

  7. Cevher, V., Sankaranarayanan, A., Duarte, M., Reddy, D., Baraniuk, R., Chellappa, R.: Compressive sensing for background subtraction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 155–168. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: ICCV 2009, pp. 1436–1443 (2009)

    Google Scholar 

  9. Magnenat-Thalmann, N., Laperrière, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics Interface 1988, Canadian Information Processing Society, pp. 26–33 (1988)

    Google Scholar 

  10. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 126–133 (2000)

    Google Scholar 

  12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220 (4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baron, D., Duarte, M.F., Wakin, M.B., Sarvotham, S., Baraniuk, R.G.: Distributed compressive sensing. The Computing Research Repository abs/0901.3403 (2009)

    Google Scholar 

  14. Baraniuk, R.G., Wakin, M.B.: Random projections of smooth manifolds. Foundations of Computational Mathematics 9, 51–77 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in modern analysis and probability (New Haven, Conn., 1982). Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society, Providence (1984)

    Chapter  Google Scholar 

  16. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. Journal of the ACM 5, 339–342 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sigal, L., Black, M.J.: Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion. Technical report, Brown University, Department of Computer Science (2006)

    Google Scholar 

  18. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, Y., Wang, L., Hartley, R., Li, H., Xu, D. (2011). Compressive Evaluation in Human Motion Tracking. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics