Abstract
A new framework for adapting common ensemble clustering methods to solve the image segmentation combination problem is presented. The framework is applied to the parameter selection problem in image segmentation and compared with supervised parameter learning. We quantitatively evaluate 9 ensemble clustering methods requiring a known number of clusters and 4 with adaptive estimation of the number of clusters. Experimental results explore the capabilities of the proposed framework. It is shown that the ensemble clustering approach yields results close to the supervised learning, but without any ground truth information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Suri, J., Setarehdan, S., Singh, S.: Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-Art Applications in Cardiology, Neurology, Mammography and Pathology. Springer, Heidelberg (2002)
Hoover, A., Jean-baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D., Bowyer, K., Eggert, D., Fitzgibbon, A., Fisher, R.: An experimental comparison of range image segmentation algorithms. IEEE Trans. on PAMI 18, 673–689 (1996)
Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. on PAMI 29, 929–944 (2007)
Cho, K., Meer, P.: Image segmentation from consensus information. Computer Vision and Image Understanding 68, 72–89 (1997)
Wattuya, P., Rothaus, K., Praßni, J.S., Jiang, X.: A random walker based approach to combining multiple segmentations. In: Proc. of the 19th Int. Conf. on Pattern Recognition (2008)
Yu, Z., Zhang, S., Wong, H.-S., Zhang, J.: Image segmentation based on cluster ensemble. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 894–903. Springer, Heidelberg (2007)
Keuchel, J., Küttel, D.: Efficient combination of probabilistic sampling approximations for robust image segmentation. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 41–50. Springer, Heidelberg (2006)
Singh, V., Mukherjee, L., Peng, J., Xu, J.: Ensemble clustering using semidefinite programming with applications. Mach. Learn. 79, 177–200 (2010)
Zhang, X., Jiao, L., Liu, F., Bo, L., Gong, M.: Spectral clustering ensemble applied to texture features for sar image segmentation. IEEE Transactions on Geoscience and Remote Sensing 46, 2126–2135 (2008)
Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refinement. In: Proceedings of ALENEX, pp. 109–117 (2008)
Fred, A.L., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. on PAMI 27, 835–850 (2005)
Grady, L.: Random walks for image segmentation. IEEE Trans. on PAMI 28, 1768–1783 (2006)
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. on Machine Learning Research 3, 583–617 (2002)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing 20, 359–392 (1998)
Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: application in vlsi domain. In: Proceedings of the 34th Annual Conference on Design Automation, DAC 1997, pp. 526–529. ACM, New York (1997)
Topchy, A.P., Jain, A.K., Punch, W.F.: Clustering ensembles: Models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1866–1881 (2005)
Gluck, M., Corter, J.: Information, uncertainty, and the utility of categories. In: Proc. of the Seventh Annual Conference of the Cognitive Science Society, pp. 283–287. Lawrence Erlbaum, Hillsdale (1985)
Vega-Pons, S., Correa-Morris, J., Ruiz-Shulcloper, J.: Weighted partition consensus via kernels. Pattern Recognition 43(8), 2712–2724 (2010)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. ICCV, vol. 2, pp. 416–423 (2001)
Rao, S., Mobahi, H., Yang, A.Y., Sastry, S., Ma, Y.: Natural image segmentation with adaptive texture and boundary encoding. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5994, pp. 135–146. Springer, Heidelberg (2010)
Arbelaez, P., Maire, M., Fowlkes, C.C., Malik, J.: From contours to regions: An empirical evaluation. In: CVPR, pp. 2294–2301. IEEE, Los Alamitos (2009)
Meilă, M.: Comparing clusterings–an information based distance. Journal of Multivariate Analysis 98, 873–895 (2007)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Franek, L., Abdala, D.D., Vega-Pons, S., Jiang, X. (2011). Image Segmentation Fusion Using General Ensemble Clustering Methods. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-19282-1_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19281-4
Online ISBN: 978-3-642-19282-1
eBook Packages: Computer ScienceComputer Science (R0)