Skip to main content

Real Time Myocardial Strain Analysis of Tagged MR Cines Using Element Space Non-rigid Registration

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Included in the following conference series:

Abstract

We develop a real time element-space non-rigid registration technique for cardiac motion tracking, enabling fast and automatic analysis of myocardial strain in tagged magnetic resonance (MR) cines. Non-rigid registration is achieved by minimizing the sum of squared differences for all pixels within a high order finite-element (FE) model customized to the specific geometry of the heart. The objective function and its derivatives are calculated in element space, and converted to image space using the Jacobian of the transformation. This enables an anisotropic distribution of user-defined model parameters, which can be customized to the application, thereby achieving fast estimations which require fewer degrees of freedom for a given level of accuracy than standard isotropic methods. A graphics processing unit (GPU) accelerated Levenberg-Marquardt procedure was implemented in Compute Unified Device Architecture (CUDA) environment to provide a fast, robust optimization procedure. The method was validated in 30 patients with wall motion abnormalities by comparison with ground truth provided by an independent expert observer using a manually-guided analysis procedure. A heart model comprising 32 parameters was capable of processing 36.5 frames per second, with an error in circumferential strain of − 1.97±1.18%. For comparison, a standard isotropic free-form deformation method requiring 324 parameters had greater error (− 3.70±1.15%) and slower frame-rate (4.5 frames/sec). In conclusion, GPU accelerated custom element-space non-rigid image registration enables real time automatic tracking of cardiac motion, and accurate estimation of myocardial strain in tagged MR cines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171, 841–845 (1989)

    Article  Google Scholar 

  2. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61, 139–157 (2005)

    Article  Google Scholar 

  3. Chandrashekara, R., Mohiaddin, R., Razavi, R., Rueckert, D.: Nonrigid image registration with subdivision lattices: Application to cardiac mr image analysis. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 335–342. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration. IEEE Transactions on Medical Imaging 23, 1245–1250 (2004)

    Article  Google Scholar 

  5. Declerck, J., Feldmar, J., Ayache, N.: Definition of a four-dimensional continuous planispheric transformation for the tracking and the analysis of left-ventricle motion. Medical Image Analysis 2, 197–213 (1998)

    Article  Google Scholar 

  6. Jordan, P., Socrate, S., Zickler, T.E., Howe, R.D.: A Nonrigid Image Registration Framework for Identification of Tissue Mechanical Parameters. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 930–938. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of computer vision 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  8. Ledesma-Carbayo, M.J., Derbyshire, J.A., Sampath, S., Santos, A., Desco, M., McVeigh, E.R.: Unsupervised estimation of myocardial displacement from tagged MR sequences using nonrigid registration. Magnetic Resonance in Medicine 59, 181–189 (2008)

    Article  Google Scholar 

  9. Li, B., Young, A., Cowan, B.: GPU accelerated non-rigid registration for the evaluation of cardiac function. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 880–887. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 171–180 (1996)

    Google Scholar 

  11. Montillo, A., Metaxas, D., Axel, L.: Extracting tissue deformation using gabor filter banks. In: Proc. of SPIE, vol. 5369, p. 2 (1996)

    Google Scholar 

  12. Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, vol. 42, pp. 1048–1060 (1999)

    Google Scholar 

  13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  14. Wierzbicki, M., Drangova, M., Guiraudon, G., Peters, T.: Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries. Medical Image Analysis 8, 387–401 (2004)

    Article  Google Scholar 

  15. Young, A.A.: Model tags: Direct 3D tracking of heart wall motion from tagged MR images. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 92–106. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Young, A.A., Axel, L., Dougherty, L., Bogen, D.K., Parenteau, C.S.: Validation of tagging with MR imaging to estimate material deformation. Radiology 188, 101–108 (1993)

    Article  Google Scholar 

  17. Young, A.A., Cowan, B.R., Thrupp, S.F., Hedley, W.J., DellItalia, L.J.: Left Ventricular Mass and Volume: Fast Calculation with Guide-Point Modeling on MR Images. Radiology 216, 597–602 (2000)

    Article  Google Scholar 

  18. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence 22, 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, B., Cowan, B.R., Young, A.A. (2011). Real Time Myocardial Strain Analysis of Tagged MR Cines Using Element Space Non-rigid Registration. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics