Abstract
Random hypothesis sampling lies at the core of many popular robust fitting techniques such as RANSAC. In this paper, we propose a novel hypothesis sampling scheme based on incremental computation of distances between partial rankings (top-k lists) derived from residual sorting information. Our method simultaneously (1) guides the sampling such that hypotheses corresponding to all true structures can be quickly retrieved and (2) filters the hypotheses such that only a small but very promising subset remain. This permits the usage of simple agglomerative clustering on the surviving hypotheses for accurate model selection. The outcome is a highly efficient multi-structure robust estimation technique. Experiments on synthetic and real data show the superior performance of our approach over previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)
Fischler, M.A., Bolles, R.C.: RANSAC: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on pattern analysis and machine intelligence 24, 603–619 (2002)
Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. TPAMI 27, 1523–1535 (2005)
Chum, O., Matas, J.: Matching with PROSAC- progressive sample consensus. In: CVPR (2005)
Sattler, T., Leibe, B., Kobbelt, L.: SCRAMSAC: Improving RANSAC’s efficiency with a spatial consistency filter. In: ICCV (2009)
Stewart, C.V.: Robust parameter estimation in Computer Vision. SIAM Review 41, 513–537 (1999)
Vincent, E., Laganiere, R.: Detecting planar homographies in an image pair. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, ISPA 2001, pp. 182–187 (2001)
Kanazawa, Y., Kawakami, H.: Detection of planar regions with uncalibrated stereo using distributions of feature points. In: BMVC (2004)
Zuliani, M., Kenney, C., Manjunath, B.: The multiransac algorithm and its application to detect planar homographies. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 3 (2005)
Toldo, R., Fusiello, A.: Robust multiple structures estimation with j-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008)
Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recognition Letters 11, 331–338 (1990)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing Top shapek Lists. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 36. SIAM, Philadelphia (2003)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2009)
Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)
Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wong, H.S., Chin, TJ., Yu, J., Suter, D. (2011). Efficient Multi-structure Robust Fitting with Incremental Top-k Lists Comparison. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-19282-1_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19281-4
Online ISBN: 978-3-642-19282-1
eBook Packages: Computer ScienceComputer Science (R0)