Skip to main content

Gradual Sampling and Mutual Information Maximisation for Markerless Motion Capture

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

  • 3910 Accesses

Abstract

The major issue in markerless motion capture is finding the global optimum from the multimodal setting where distinctive gestures may have similar likelihood values. Instead of only focusing on effective searching as many existing works, our approach resolves gesture ambiguity by designing a better-behaved observation likelihood. We extend Annealed Particle Filtering by a novel gradual sampling scheme that allows evaluations to concentrate on large mismatches of the tracking subject. Noticing the limitation of silhouettes in resolving gesture ambiguity, we incorporate appearance information in an illumination invariant way by maximising Mutual Information between an appearance model and the observation. This in turn strengthens the effectiveness of the better-behaved likelihood. Experiments on the benchmark datasets show that our tracking performance is comparable to or higher than the state-of-the-art studies, but with simpler setting and higher computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape and pose from images. In: CVPR (2007)

    Google Scholar 

  2. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. In: ACM SIGGRAPH, pp. 1–10 (2008)

    Google Scholar 

  3. Starck, J., Hilton, A.: Surface capture for performance based animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)

    Article  Google Scholar 

  4. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE TPAMI 16, 150–162 (1994)

    Article  Google Scholar 

  5. Corazza, S., Mündermann, L., Gambaretto, E., Andriacchi, T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. International Journal of Computer Vision 87, 156–169 (2010)

    Article  Google Scholar 

  6. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27(4), 623–656 (1948); Continued 27(4), 623–656 (October 1948)

    Article  MathSciNet  MATH  Google Scholar 

  7. Magnenat-Thalmann, N., Laperrière, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proceedings on Graphics Interface 1988. Canadian Information Processing Society, pp. 26–33 (1988)

    Google Scholar 

  8. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In: CVPR, p. 1067. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  9. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE TPAMI 14, 239–256 (1992)

    Article  Google Scholar 

  10. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: CVPR, vol. 2, pp. 126–133 (2000)

    Google Scholar 

  11. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering. Statistics and Computing 10, 197–208 (2000)

    Article  Google Scholar 

  12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sigal, L., Black, M.J.: Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion. Technical report, Brown University, Department of Computer Science (2006)

    Google Scholar 

  14. Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24, 137–154 (1997)

    Article  Google Scholar 

  15. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture - a multi-layer framework. IJCV 87, 75–92 (2010)

    Article  Google Scholar 

  16. Bandouch, J., Beetz, M.: Tracking humans interacting with the environment using efficient hierarchical sampling and layered observation models. In: IEEE ICCV Workshop on Human-Computer Interaction, HCI (2009)

    Google Scholar 

  17. Sigal, L., Balan, A., Black, M.: Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision (2010)

    Google Scholar 

  18. Cheng, S.Y., Trivedi, M.M.: Articulated human body pose inference from voxel data using a kinematically constrained gaussian mixture model. In: CVPR Workshop on EHUM2. IEEE, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, Y., Wang, L., Hartley, R., Li, H., Xu, D. (2011). Gradual Sampling and Mutual Information Maximisation for Markerless Motion Capture. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics