Skip to main content

Hemispherical Confocal Imaging Using Turtleback Reflector

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6492))

Included in the following conference series:

Abstract

We propose a new imaging method called hemispherical confocal imaging to clearly visualize a particular depth in a 3-D scene. The key optical component is a turtleback reflector which is a specially designed polyhedral mirror. By combining the turtleback reflector with a coaxial pair of a camera and a projector, many virtual cameras and projectors are produced on a hemisphere with uniform density to synthesize a hemispherical aperture. In such an optical device, high frequency illumination can be focused at a particular depth in the scene to visualize only the depth with descattering. Then, the observed views are factorized into masking, attenuation, and texture terms to enhance visualization when obstacles are present. Experiments using a prototype system show that only the particular depth is effectively illuminated and hazes by scattering and attenuation can be recovered even when obstacles exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E.H., Wang, J.Y.A.: Single Lens Stereo with a Plenoptic Camera. IEEE Tran. on PAMI, 99–106 (1992)

    Google Scholar 

  2. Cossairt, O., Nayar, S.K., Ramamoorthi, R.: Light Field Transfer: Global Illumination Between Real and Synthetic Objects. In: Proc. SIGGRAPH 2008, pp. 1–6 (2008)

    Google Scholar 

  3. Dana, K.J., Wang, J.: Device for convenient measurement of spatially varying bidirectional reflectance. J. Opt. Soc. Am. A 21(1), 1–12 (2004)

    Article  Google Scholar 

  4. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the Reflectance Field of a Human Face. In: Proc. SIGGRAPH 2000, pp. 145–156 (2000)

    Google Scholar 

  5. Fuchs, C., Heinz, M., Levoy, M., Seidel, H., Lensch, H.: Combining Confocal Imaging and Descattering. In: Proc. Computer Graphics Forum, Special Issue for the Eurographics Symposium on Rendering, vol. 27(4), pp. 1245–1253 (2008)

    Google Scholar 

  6. Garg, G., Talvala, E.V., Levoy, M., Lensch, H.P.A.: Symmetric Photography: Exploiting Data-sparseness in Reflectance Fields. In: Proc. EGSR 2006, pp. 251–262 (2006)

    Google Scholar 

  7. Ghosh, A., Achutha, S., Heidrich, W., O’Toole, M.: BRDF Acquisition with Basis Illumination. In: Proc. ICCV 2007 (2007)

    Google Scholar 

  8. Gu, J., Nayar, S.K., Grinspun, E., Belhumeur, P.N., Ramamoorthi, R.: Compressive Structured Light for Recovering Inhomogeneous Participating Media. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 845–858. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Han, J.Y., Perlin, K.: Measuring Bidirectional Texture Reflectance with a Kaleidoscope. ACM Transactions on Graphics 22(3), 741–748 (2003)

    Article  Google Scholar 

  10. Kuthirummal, S., Nayar, S.K.: Multiview Radial Catadioptric Imaging for Scene Capture. In: Proc. SIGGRAPH 2006, pp. 916–923 (2006)

    Google Scholar 

  11. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., Bolas, M.: Synthetic Aperture Confocal Imaging. In: Proc. SIGGRAPH 2004, pp. 825–834 (2004)

    Google Scholar 

  12. Levoy, M., Hanrahan, P.: Light field rendering. In: Proc. SIGGRAPH 1996, pp. 31–42 (1996)

    Google Scholar 

  13. Masselus, V., Peers, P., Dutré, P., Willems, Y.D.: Relighting with 4D incident light fields. In: Proc. SIGGRAPH 2003, pp. 613–620 (2003)

    Google Scholar 

  14. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., McMillan, L.: Image-Based 3D Photography using Opacity Hulls. In: Proc. SIGGRAPH 2002, pp. 427–437 (2002)

    Google Scholar 

  15. Minsky, M.: Microscopy apparatus. US Patent 3013467 (1961)

    Google Scholar 

  16. Mukaigawa, Y., Sumino, K., Yagi, Y.: Multiplexed Illumination for Measuring BRDF Using an Ellipsoidal Mirror and a Projector. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 246–257. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Müller, G., Bendels, G.H., Klein, R.: Rapid Synchronous Acquisition of Geometry and Appearance of Cultural Heritage Artefacts. In: Proc. VAST 2005, pp. 13–20 (2005)

    Google Scholar 

  18. Narasimhan, S.G., Nayar, S.K., Sun, B., Koppal, S.J.: Structured light in scattering media. In: Proc. ICCV 2005, vol. 1, pp. 420–427 (2005)

    Google Scholar 

  19. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination. In: Proc. SIGGRAPH 2006, pp. 935–944 (2006)

    Google Scholar 

  20. Sen, P., Chen, B., Garg, G., Marschner, S., Horowitz, M., Levoy, M., Lensch, H.: DualPhotography. In: Proc. SIGGRAPH 2005, pp. 745–755 (2005)

    Google Scholar 

  21. Treibitz, T., Schechner, Y.Y.: Active Polarization Descattering. IEEE Tran. on PAMI 31(3), 385–399 (2009)

    Article  Google Scholar 

  22. Unger, J., Wenger, A., Hawkins, T., Gardner, A., Debevec, P.: Capturing and Rendering With Incident Light Fields. In: Proc. EGRW 2003, pp. 141–149 (2003)

    Google Scholar 

  23. Vaish, V., Szeliski, R., Zitnick, C.L., Kang, S.B., Levoy, M.: Reconstructing Occluded Surfaces using Synthetic Apertures: Stereo, Focus and Robust Measures. In: CVPR 2006, vol. II, pp. 2331–2338 (2006)

    Google Scholar 

  24. Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using Plane + Parallax for Calibrate Dense Camera Arrays. In: Proc. CVPR 2004 (2004)

    Google Scholar 

  25. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing. In: Proc. SIGGRAPH 2007 (2007)

    Google Scholar 

  26. Ward, G.J.: Measuring and Modeling anisotropic reflection. In: Proc. SIGGRAPH 1992, pp. 255–272 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mukaigawa, Y., Tagawa, S., Kim, J., Raskar, R., Matsushita, Y., Yagi, Y. (2011). Hemispherical Confocal Imaging Using Turtleback Reflector. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19315-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19314-9

  • Online ISBN: 978-3-642-19315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics