Abstract
Small surface objects, usually containing important information, are difficult to be identified under realistic atmospheric conditions because of weather degraded image features. This paper describes a novel algorithm to overcome the problem, using depth-aware analysis. Because objects-participating local patches always contain low intensities in at least one color channel, we detect suspicious small surface objects using the dark channel prior. Then, we estimate the approximate depth map of maritime scenes from a single image, based on the theory of perspective projection. Finally, using the estimated depth map and the atmospheric scattering model, we design spatial-variant thresholds to identify small surface objects from noisy backgrounds, without contrast enhancement. Experiments show that the proposed method has real-time implementation, and it can outperform the state-of-the-art algorithms on the detection of distant small surface objects with only a few pixels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: CVPR (2009)
Chan, A.B.: Beyond Dynamic Textures: a Family of Stochastic Dynamical Models for Video with Applications to Computer Vision. PhD thesis, University of California, San Diego (2008)
Cozman, F., Krotkov, E.: Depth from scattering. In: CVPR, pp. 801–806 (1997)
Fattal, R.: Single image dehazing. In: SIGGRAPH, pp. 1–9 (2008)
Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)
Gupta, K.M., Aha, D.W., Moore, P.: Case-based collective inference for maritime object classification. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 434–449. Springer, Heidelberg (2009)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: CVPR, pp. 1956–1963 (2009)
Herk, M.V.: A fast algorithm for local minimum and maximum filters on rectangular and octogonal kernels. Pattern Recognition Letters 13, 517–521 (1992)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR (2007)
Mallat, S., Hwang, W.: Singularity detection and processing with wavelets. IEEE Transactions on Information Theory 38, 617–643 (1992)
McCartney, E.J.: Optics of the Atmosphere–Scattering by Molecules and Particles. John Wiley and Sons Inc., Chichester (1976)
Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. International Journal of Computer Vision 48, 233–254 (2002)
Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 713–724 (2003)
Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: ICCV, pp. 820–827 (1999)
Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010)
Sanderson, J., Teal, M., Ellis, T.: Target identification in complex maritime scenes. In: The Sixth International Conference on Image Processing and its Applications, vol. 2, pp. 463–467 (1997)
Smith, A., Teal, M., Voles, P.: The statistical characterization of the sea for the segmentation of maritime images. In: The 4th EC-VIP-MC, vol. 2, pp. 489–494 (2003)
Sullivan, M.D.R., Shah, M.: Visual surveillance in maritime port facilities. In: Visual Information Processing XVII, pp. 1–8 (2008)
Tan, R.: Visibility in bad weather from a single image. In: CVPR, pp. 1–8 (2008)
Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27, 773–780 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qi, B., Wu, T., He, H., Hu, T. (2011). Real-Time Detection of Small Surface Objects Using Weather Effects. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-19318-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19317-0
Online ISBN: 978-3-642-19318-7
eBook Packages: Computer ScienceComputer Science (R0)