Skip to main content

Abstraction and Generalization of 3D Structure for Recognition in Large Intra-Class Variation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Abstract

Humans have abstract models for object classes which helps recognize previously unseen instances, despite large intra-class variations. Also objects are grouped into classes based on their purpose. Studies in cognitive science show that humans maintain abstractions and certain specific features from the instances they observe. In this paper, we address the challenging task of creating a system which can learn such canonical models in a uniform manner for different classes. Using just a few examples the system creates a canonical model (COMPAS) per class, which is used to recognize classes with large intra-class variation (chairs, benches, sofas all belong to sitting class). We propose a robust representation and automatic scheme for abstraction and generalization. We quantitatively demonstrate improved recognition and classification accuracy over state-of-art 3D shape matching/classification method and discuss advantages over rule based systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winston, P.H.: Learning structural descriptions from examples. In: Winston, P.h. (ed.) The Psychology of Computer Vision, McGraw-Hill, New York (1975)

    Google Scholar 

  2. Winston, P., Binford, T., Katz, B., Lowry, M.: Learning physical descriptions from functional definitions, examples,and precedents. In: Proc. Int. Symp. Robotics Research, vol. 1. MIT Press, Cambridge (1984)

    Google Scholar 

  3. Connell, J.H., Brady, M.: Generating and generalizing models of visual objects. Artif. Intell. 31, 159–183 (1987)

    Article  Google Scholar 

  4. Brady, M., Agre, P.E., Braunegg, D.J., Connell, J.H.: The mechanics mate. In: Advances in Artificial Intelligence, pp. 79–94 (1985)

    Google Scholar 

  5. Minsky, M.: The society of mind, pp. 79–94 (1985)

    Google Scholar 

  6. Posner, M.I., Keele, S.W.: On the genesis of abstract ideas. J. Exp. Psychol. 77, 353–363 (1968)

    Article  Google Scholar 

  7. Reed, S.K.: Pattern recognition and categorization. Cognitive Psychology 3, 382–407 (1972)

    Article  Google Scholar 

  8. Smith, J.D., Paul, J.: Distinguishing prototype-based and exemplar-based processes in dot-pattern category learning. Processes in Category Learning, Journal of Experimental Psychology: Learning, Memory, and Cognition, 800–811 (2002)

    Google Scholar 

  9. Stark, L., Bowyer, K.: Achieving generalized object recognition through reasoning about association of function to structure. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 1097–1104 (1991)

    Article  Google Scholar 

  10. Stark, L., Bowyer, K.: Function-based generic recognition for multiple object categories. CVGIP: Image Understanding 59, 1–21 (1994)

    Article  Google Scholar 

  11. Pechuk, M., Soldea, O., Rivlin, E.: Learning function-based object classification from 3d imagery. Computer Vision and Image Understanding 110, 173–191 (2008)

    Article  Google Scholar 

  12. Fried, L.S., Holyoak, K.J.: Induction of category distributions: A framework for classification learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 10, 234–257 (1984)

    Google Scholar 

  13. Rips, L.J.: Similarity, typicality, and categorization, pp. 21–59 (1989)

    Google Scholar 

  14. Estes, W.K.: Array models for category learning. Cognitive Psychology, 500–549 (1986)

    Google Scholar 

  15. Brooks, L.R.: Nonanalytic concept formation and memory for instances. In: Rosch, E., Lloyd, B.B. (eds.) Cognition and Categorization, pp. 169–211 (1978)

    Google Scholar 

  16. Rosch, E.: Principles of categorization. In: Rosch, E., Lloyd, B.B. (eds.) Cognition and Categorization, pp. 27–48 (1978)

    Google Scholar 

  17. Ashby, F.G., Alfonso-Reese, L.A., Turken, A.U., Waldron, E.M.: A neuropsychological theory of multiple systems in category learning. Psychological Review, 442–481 (1998)

    Google Scholar 

  18. Ashby, F.G., Ell, S.W.: The neurobiology of human category learning. Trends in Cognitive Science, 204–210 (2001)

    Google Scholar 

  19. Erickson, M.A., Kruschke, J.K.: Rules and exemplars in category learning. Journal of Experimental Psychology: General, 107–140 (1998)

    Google Scholar 

  20. Love, B.C., Medin, D.L., Gureckis, T.M.: A network model of category learning. Psychological Review, 309–332 (2004)

    Google Scholar 

  21. Vanpaemel, W., Storms, G.: In search of abstraction: the varying abstraction model of categorization. Psychonomic Bulletin and Review, 732–749 (2008)

    Google Scholar 

  22. Smith, J.D., Chapman, W.P., Redford, J.S.: Stages of category learning in monkeys (macaca mulatta) and humans (homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 39–53 (2010)

    Google Scholar 

  23. Veloso, M.M., Rybski, P.E., von Hundelshausen, F.: Focus: a generalized method for object discovery for robots that observe and interact with humans. In: HRI 2006: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 102–109. ACM, New York (2006)

    Google Scholar 

  24. Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: Using spatial and functional compatibility for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 1775–1789 (2009)

    Article  Google Scholar 

  25. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)

    Article  Google Scholar 

  26. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. Shape Modeling International (June 2004)

    Google Scholar 

  27. Saupe, D., Vranic, D.V.: 3D model retrieval with spherical harmonics and moments. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 392–397. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Kostelec, P.J., Rockmore, D.N.: Ffts on the rotation group. Technical report (2003)

    Google Scholar 

  29. Kostelec, P., Rockmore, D.: Ffts on the rotation group. Journal of Fourier Analysis and Applications 14, 145–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Breiman, L.: Random forests. Machine Learning, 5–32 (2001)

    Google Scholar 

  31. Princeton: 3d model search engine, http://shape.cs.princeton.edu/search.html

  32. Winston, P.H.: Learning structural descriptions from examples (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Somanath, G., Kambhamettu, C. (2011). Abstraction and Generalization of 3D Structure for Recognition in Large Intra-Class Variation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics