Skip to main content

Adaptive ε LBP for Background Subtraction

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Included in the following conference series:

Abstract

Background subtraction plays an important role in many computer vision systems, yet in complex scenes it is still a challenging task, especially in case of illumination variations. In this work, we develop an efficient texture-based method to tackle this problem. First, we propose a novel adaptive ε LBP operator, in which the threshold is adaptively calculated by compromising two criterions, i.e. the description stability and the discriminative ability. Then, the naive Bayesian technique is adopted to effectively model the probability distribution of local patterns in the pixel level, which utilizes only one single ε LBP pattern instead of ε LBP histogram of local region. Our approach is evaluated on several video sequences against the traditional methods. Experiments show that our method is suitable for various scenes, especially can robust handle illumination variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koller, D., Weber, J., Malik, J.: Robust multiple car tracking with occlusion reasoning. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 189–196. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via arobust kalman filter. In: IEEE International Conference on Computer Vision, pp. 44–50 (2003)

    Google Scholar 

  3. Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 831–843 (2000)

    Article  Google Scholar 

  4. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In: International Conference on Computer Vision, vol. 1, pp. 44–50. IEEE, Los Alamitos (2003)

    Google Scholar 

  5. Wren, C.R., Azarbayejani, A., Darrel, T., Pentland, A.: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)

    Article  Google Scholar 

  6. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)

    Google Scholar 

  7. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Transaction on Pattern Analysis and Machine Intelligence 28, 657–662 (2006)

    Article  Google Scholar 

  9. Yao, J., Odobez, J.M.: Multi-layer background subtraction based on color and texture. In: IEEE Workshop on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  10. Liao, S., Zhao, G., Kellokumpu, V., Pietikainen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  11. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Transaction on Image Processing 13, 1459–1472 (2004)

    Article  Google Scholar 

  12. Kim, K., Chalidabhongse, T., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging In Special Issue on Video Object Processing 11, 172–185 (2005)

    Google Scholar 

  13. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transaction on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  14. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)

    Article  Google Scholar 

  15. Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russell, S.: Towards robust automatic traffic scene analysis in real-time. In: IEEE International Conference on Pattern Recognition, vol. 1, pp. 126–131 (1994)

    Google Scholar 

  16. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)

    Google Scholar 

  17. Fisher, R.: The pets 2004 surveillance ground-truth datasets. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance(PETS 2004), vol. 5, pp. 1–5 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Wu, H., Pan, C. (2011). Adaptive ε LBP for Background Subtraction. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics