Skip to main content

Exploiting Character Class Information in Forensic Writer Identification

  • Conference paper
Computational Forensics (IWCF 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6540))

Included in the following conference series:

Abstract

Questioned document examination is extensively used by forensic specialists for criminal identification. This paper presents a writer recognition system based on contour features operating in identification mode (one-to-many) and working at the level of isolated characters. Individual characters of a writer are manually segmented and labeled by an expert as pertaining to one of 62 alphanumeric classes (10 numbers and 52 letters, including lowercase and uppercase letters), being the particular setup used by the forensic laboratory participating in this work. Three different scenarios for identity modeling are proposed, making use to a different degree of the class information provided by the alphanumeric samples. Results obtained on a database of 30 writers from real forensic documents show that the character class information given by the manual analysis provides a valuable source of improvement, justifying the significant amount of time spent in manual segmentation and labeling by the forensic specialist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Srihari, S., Huang, C., Srinivasan, H., Shah, V.: Biometric and Forensic Aspects of Digital Document Processing. In: Digital Document Processing, ch. 17, pp. 379–406. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Srihari, S.N., Cha, S.H., Arora, H., Lee, S.: Individuality of handwriting. Journal of Forensic Sciences 47(4), 856–872 (2002)

    Article  Google Scholar 

  3. Plamondon, R., Srihari, S.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(1), 63–84 (2000)

    Article  Google Scholar 

  4. Srihari, S., Leedham, G.: A survey of computer methods in forensic document examination. In: Proc. 11th International Graphonomics Society Conference, IGS, pp. 278–281 (November 2003)

    Google Scholar 

  5. Schomaker, L.: Writer identification and verification. In: Sensors, Systems and Algorithms, Advances in Biometrics. Springer, Heidelberg (2008)

    Google Scholar 

  6. Tapiador, M.: Análisis de las Características de Identificación Biométrica de la Escritura Manuscrita y Mecanográfica. PhD thesis, Escuela Politécnica Superior, Universidad Autónoma de Madrid (2006)

    Google Scholar 

  7. Schomaker, L.: Advances in writer identification and verification. In: Proc. Intl. Conference on Document Analysis and Recognition, ICDAR, vol. 2, pp. 1268–1273 (2007)

    Google Scholar 

  8. Schomaker, L., Bulacu, M.: Automatic writer identification using connected-component contours and edge-based features of upper-case western script. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(6), 787–798 (2004)

    Article  Google Scholar 

  9. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. on Pattern Analysis and Machine Inteligence 29(4), 701–717 (2007)

    Article  Google Scholar 

  10. Tapiador, M., Sigüenza, J.: Writer identification method based on forensic knowledge. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 555–560. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Jain, A., Flynn, P., Ross, A. (eds.): Handbook of Biometrics. Springer, Heidelberg (2008)

    Google Scholar 

  12. Otsu, N.: A threshold selection method for gray-level histograms. IEEE Trans. on Systems, Man and Cybernetics 9, 62–66 (1979)

    Article  Google Scholar 

  13. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (2002)

    Google Scholar 

  14. Jain, A., Nandakumar, K., Ross, A.: Score Normalization in Multimodal Biometric Systems. Pattern Recognition 38(12), 2270–2285 (2005)

    Article  Google Scholar 

  15. Fierrez-Aguilar, J., Garcia-Romero, D., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Adapted user-dependent multimodal biometric authentication exploiting general information. Pattern Recognition Letters 26, 2628–2639 (2005)

    Article  Google Scholar 

  16. Galbally, J., Fierrez, J., Freire, M.R., Ortega-Garcia, J.: Feature selection based on genetic algorithms for on-line signature verification. In: Proc. IEEE Workshop on Automatic Identification Advanced Technologies, AutoID, pp. 198–203 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso-Fernandez, F., Fierrez, J., Galbally, J., Ortega-Garcia, J. (2011). Exploiting Character Class Information in Forensic Writer Identification. In: Sako, H., Franke, K.Y., Saitoh, S. (eds) Computational Forensics. IWCF 2010. Lecture Notes in Computer Science, vol 6540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19376-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19376-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19375-0

  • Online ISBN: 978-3-642-19376-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics