Skip to main content

Learning Visual Representations for Interactive Systems

  • Conference paper
Book cover Robotics Research

Abstract

We describe two quite different methods for associating action parameters to visual percepts. Our RLVC algorithm performs reinforcement learning directly on the visual input space. To make this very large space manageable, RLVC interleaves the reinforcement learner with a supervised classification algorithm that seeks to split perceptual states so as to reduce perceptual aliasing. This results in an adaptive discretization of the perceptual space based on the presence or absence of visual features. Its extension RLJC also handles continuous action spaces. In contrast to the minimalistic visual representations produced by RLVC and RLJC, our second method learns structural object models for robust object detection and pose estimation by probabilistic inference. To these models, the method associates grasp experiences autonomously learned by trial and error. These experiences form a nonparametric representation of grasp success likelihoods over gripper poses, which we call a grasp density. Thus, object detection in a novel scene simultaneously produces suitable grasping options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.: Dynamic programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  2. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)

    Google Scholar 

  3. Breiman, L., Friedman, J., Stone, C.: Classification and Regression Trees. Wadsworth International Group (1984)

    Google Scholar 

  4. Bryant, R.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)

    Article  Google Scholar 

  5. Detry, R., Başeski, E., Popović, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.: Learning Object-specific Grasp Affordance Densities. In: International Conference on Development and Learning (2009)

    Google Scholar 

  6. Detry, R., Pugeault, N., Piater, J.: A Probabilistic Framework for 3D Visual Object Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(10), 1790–1803 (2009)

    Google Scholar 

  7. Gouet, V., Boujemaa, N.: Object-based queries using color points of interest. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, Kauai, HI, USA, pp. 30–36 (2001)

    Google Scholar 

  8. Jodogne, S., Piater, J.: Interactive Learning of Mappings from Visual Percepts to Actions. In: 22nd International Conference on Machine Learning, pp. 393–400 (2005)

    Google Scholar 

  9. Jodogne, S., Piater, J.: Learning, then Compacting Visual Policies. In: 7th European Workshop on Reinforcement Learning, Naples, Italy, pp. 8–10 (2005)

    Google Scholar 

  10. Jodogne, S., Piater, J.: Task-Driven Discretization of the Joint Space of Visual Percepts and Continuous Actions. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 222–233. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Jodogne, S., Piater, J.: Closed-Loop Learning of Visual Control Policies. Journal of Artificial Intelligence Research 28, 349–391 (2007)

    MATH  Google Scholar 

  12. Jodogne, S., Scalzo, F., Piater, J.: Task-Driven Learning of Spatial Combinations of Visual Features. In: Proc. of the IEEE Workshop on Learning in Computer Vision and Pattern Recognition, Workshop at CVPR, San Diego, CA, USA (2005)

    Google Scholar 

  13. Kraft, D., Pugeault, N., Başeski, E., Popović, M., Kragić, D., Kalkan, S., Wörgötter, F., Krüger, N.: Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes. International Journal of Humanoid Robotics 5, 247–265 (2008)

    Article  Google Scholar 

  14. Krüger, N., Lappe, M., Wörgötter, F.: Biologically Motivated Multimodal Processing of Visual Primitives. Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour 1(5), 417–428 (2004)

    Google Scholar 

  15. Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library (COIL-100). Tech. Rep. CUCS-006-96, Columbia University, New York (1996)

    Google Scholar 

  16. Popović, M., Kraft, D., Bodenhagen, L., Başeski, E., Pugeault, N., Kragić, D., Krüger, N.: An Adaptive Strategy for Grasping Unknown Objects Based on Co-planarity and Colour Information (submitted)

    Google Scholar 

  17. Pugeault, N.: Early Cognitive Vision: Feedback Mechanisms for the Disambiguation of Early Visual Representation. Vdm Verlag Dr. Müller (2008)

    Google Scholar 

  18. Pugeault, N., Wörgötter, F., Krüger, N.: Accumulated Visual Representation for Cognitive Vision. In: British Machine Vision Conference (2008)

    Google Scholar 

  19. Samuel, A.: Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development 3(3), 210–229 (1959)

    Article  Google Scholar 

  20. Sudderth, E., Ihler, A., Freeman, W., Willsky, A.: Nonparametric Belief Propagation. In: Computer Vision and Pattern Recognition, vol. I, pp. 605–612 (2003)

    Google Scholar 

  21. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  22. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  23. Watkins, C.: Learning From Delayed Rewards. Ph.D. thesis, King’s College, Cambridge, UK (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piater, J. et al. (2011). Learning Visual Representations for Interactive Systems. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19457-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19456-6

  • Online ISBN: 978-3-642-19457-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics