Skip to main content

Design and Fabrication of the Harvard Ambulatory Micro-Robot

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 70))

Abstract

Here we present the design and fabrication of a 90mg hexapedal microrobot with overall footprint dimensions of 17 mm long x 23 mm wide. Utilizing smart composite microstructure fabrication techniques, we combine composite materials and polymers to form articulated structures that assemble into an eight degree of freedom robot. Using thin foil shape memory alloy actuators and inspiration from biology we demonstrate the feasibility of manufacturing a robot with insect-like morphology and gait patterns. This work is a foundational step towards the creation of an insect-scale hexapod robot which will be robust both structurally and with respect to locomotion across a wide variety of terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asbeck, A.T., Kim, S., Cutkosky, M.R., Provancher, W.R., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine arrays. The International Journal of Robotics Research 25(12), 1165 (2006)

    Article  Google Scholar 

  2. Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences 99(19), 12252–12256 (2002)

    Article  Google Scholar 

  3. Bergbreiter, S., Pister, K.S.J.: Design of an autonomous jumping microrobot. In: IEEE Int. Conf. on Robotics and Automation, Roma, Italy (April 2007)

    Google Scholar 

  4. Cowan, N.J., Ma, E.J., Cutkosky, M., Full, R.J.: A biologically inspired passive antenna for steering control of a running robot. Springer Tracts in Advanced Robotics 15, 541–550 (2005)

    Google Scholar 

  5. Donald, B.R., Levy, C.G., McGray, C.D., Rus, D.: An untethered, electrostatic, globally controllable mems micro-robot. J. of Microelectrical Mechanical Systems 15, 1–15 (2006)

    Article  Google Scholar 

  6. Ebefors, T., Mattsson, J.U., Kälvesten, E., Stemme, G.: A walking silicon micro-robot. In: The 10th Int. Conf. on Solid-State Sensors and Actuators, Transducers 1999, Sendai, Japan, pp. 1202–1205 (June 1999)

    Google Scholar 

  7. Edwards, J.S., Tarkanian, M.: The adhesive pads of Heteroptera: a re-examination. In: Proceedings of the Royal Entomological Society of London. Series A, General Entomology, vol. 45, pp. 1–5. Blackwell Publishing Ltd., Malden (1970)

    Google Scholar 

  8. Full, R.J., Tu, M.S.: Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J. of Experimental Biology 156, 215–231 (1991)

    Google Scholar 

  9. Goldman, D.I., Chen, T.S., Dudek, D.M.: Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology 209(15), 2990 (2006)

    Article  Google Scholar 

  10. Hoover, A.M., Steltz, E., Fearing, R.S.: Roach: An autonomous 2.4g crawling hexapod robot. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France (September 2008)

    Google Scholar 

  11. Kim, S., Asbeck, A.T., Cutkosky, M.R., Provancher, W.R.: Spinybotii: Climbing hard walls with compliant microspines. In: IEEE Int. Conf. on Advanced Robotics, Seattle, WA (July 2005)

    Google Scholar 

  12. Kim, S., Spenko, M., Trujillo, S., Santos, D., Cutkosky, M.R.: Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics 24, 65–74 (2008)

    Article  Google Scholar 

  13. Lee, J., Sponberg, S.N., Loh, O.Y., Lamperson, A.G., Full, R.J., Cowan, N.J.: Templates and anchors for antenna-based wall following in cockroaches and robots. IEEE Transactions on Robotics 24(1) (February 2008)

    Google Scholar 

  14. Lewinger, W.A., Harley, C.M., Ritzman, R.E., Branicky, M.S., Quinn, R.D.: Insect-like antennal sensing for climbing and tunneling behavior in a biologically-inspired mobile robot. In: IEEE Int. Conf. on Robotics and Automation, Seattle, WA (July 2005)

    Google Scholar 

  15. Morrey, J.M., Lambrecht, B., Horchler, A.D., Ritzmann, R.E., Quinn, R.D.: Highly mobile and robust small quadruped robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV (October 2003)

    Google Scholar 

  16. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quadruped robot. In: Proc. of the 17th World Congress, Seoul, Korea (July 2008)

    Google Scholar 

  17. Roth, L.M., Willis, E.R.: Tarsal structure and climbing ability of cockroaches. J. of Exp. Zool. 119(3), 483–517 (1952)

    Article  Google Scholar 

  18. Roth, L.M., Willis, E.R.: Tarsal structure and climbing ability of cockroaches. Journal of Experimental Zoology 119(3) (1952)

    Google Scholar 

  19. Saranli, U., Buehler, M., Koditschek, D.E.: RHex - a simple and highly mobile hexapod robot. Int. J. of Robotics Research 20, 616–631 (2001)

    Article  Google Scholar 

  20. SoftIntegration. Interactive four-bar linkage position analysis

    Google Scholar 

  21. Sponberg, S., Full, R.J.: Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. J. of Experimental Biology 211, 433–446 (2008)

    Article  Google Scholar 

  22. Teasdale, D., Milanovic, V., Chang, P., Pister, K.S.J.: Microrockets for smart dust. Smart Materials and Structures 6, 1145–1155 (2001)

    Article  Google Scholar 

  23. Trimmer, W.S.N.: Microrobots and micromechanical systems. J. of Sensors and Actuators 19, 267–287 (1989)

    Article  Google Scholar 

  24. Wood, R.J.: The first flight of a biologically-inspired at-scale robotic insect. IEEE Transactions on Robotics 24(2) (April 2008)

    Google Scholar 

  25. Wood, R.J., Avadhanula, S., Sahai, R., Steltz, E., Fearing, R.S.: Microrobot design using fiber reinforced composites. J. of Mech. Design 130(5) (May 2008)

    Google Scholar 

  26. Wood, R.J., Avadhanula, S., Steltz, E., Seeman, M., Entwistle, J., Bacharach, A., Barrows, G., Sanders, S., Fearing, R.S.: Design, fabrication and initial results of a 2g autonomous glider. In: Conf. on IEEE Industrial Electronics, Raleigh, NC (November 2005)

    Google Scholar 

  27. Yeh, R., Hollar, S., Pister, K.S.J.: Design of low-power silicon articulated microrobots. J. of Micromechatronics 1(3), 191–203 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baisch, A.T., Wood, R.J. (2011). Design and Fabrication of the Harvard Ambulatory Micro-Robot. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19457-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19456-6

  • Online ISBN: 978-3-642-19457-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics