Skip to main content

Sensing and Control on the Sphere

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 70))

Abstract

The advantages of a spherical imaging model are increasingly well recognized within the robotics community. Perhaps less well known is the use of the sphere for attitude estimation, control and scene structure estimation. This paper proposes the sphere as a unifying concept, not just for cameras, but for sensor fusion, estimation and control.We review and summarize relevant work in these areas and illustrate this with relevant simulation examples for spherical visual servoing and scene structure estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baerveldt, A.J., Klang, R.: A low-cost and low-weight attitude estimation system for an autonomous helicopter. Intelligent Engineering Systems (1997)

    Google Scholar 

  2. Bonnabel, S., Martin, P., Rouchon, P.: Invariant asymptotic observers. IEEE Transactions on Automatic Control (2008), http://arxiv.org/abs/math.OC/0612193 (accepted for publication)

  3. Bülow, T.: Spherical diffusion for 3D surface smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(12), 1650–1654 (2004)

    Article  Google Scholar 

  4. Campoloa, D., Kellerb, F., Guglielmellia, E.: Inertial/magnetic sensors based orientation tracking on the group of rigid body rotations with application to wearable devices. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4762–4767 (2006)

    Google Scholar 

  5. Chahl, J.S., Srinivasan, M.V.: Reflective surfaces for panoramic imaging. Applied Optics 31(36), 8275–8285 (1997)

    Article  Google Scholar 

  6. Chahl, J.S., Thakoor, S., Bouffant, N.L., Stange, G., Srinivasan, M.V., Hine, B., Zornetzer, S.: Bioinspired engineering of exploration systems: A horizon sensor/attitude reference system based on the dragonfly ocelli for mars exploration applications. J. Field Robotics 20(1), 35–42 (2003)

    Google Scholar 

  7. Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robotics & Automation Magazine 13(4), 82–90 (2006), doi:10.1109/MRA.2006.250573

    Article  Google Scholar 

  8. Chaumette, F., Hutchinson, S.: Visual servo control. ii. advanced approaches [tutorial]. IEEE Robotics & Automation Magazine 14(1), 109–118 (2007), doi:10.1109/MRA.2007.339609

    Article  Google Scholar 

  9. Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Robotic Systems 21(2), 43–51 (2004)

    Article  Google Scholar 

  10. Corke, P., Hutchinson, S.A.: A new partitioned approach to image-based visual servo control. IEEE Trans. Robot. Autom. 17(4), 507–515 (2001)

    Article  Google Scholar 

  11. Corke, P., Lobo, J., Dias, J.: An introduction to inertial and visual sensing. Int. J. Robotics Research 26(6), 519–536 (2007)

    Article  Google Scholar 

  12. Corke, P., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: Proceedings International Conference on Intelligent Robots and Systems, pp. 4007–4012 (2004)

    Google Scholar 

  13. Crassidis, J.L., Markley, F.L., Cheng, Y.: Nonlinear attitude filtering methods. Journal of Guidance, Control,and Dynamics 30(1), 12–28 (2007)

    Article  Google Scholar 

  14. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation 8(3), 313–326 (1992)

    Article  Google Scholar 

  15. Gebre-Egziabher, D., Hayward, R.C., Powell, J.D.: Design of multi-sensor attitude determination systems. IEEE Transactions on Aerospace and Electronic Systems 40(2), 627–649 (2004)

    Article  Google Scholar 

  16. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 445–461. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid-body system: An image based approach. IEEE Transactions on Robotics and Automation 18(2), 187–198 (2002)

    Article  Google Scholar 

  18. Hansen, P., Boles, W., Corke, P.: Spherical diffusion for scale-invariant keypoint detection in wide-angle images. In: DICTA 2008: Proceedings of the 2008 Digital Image Computing: Techniques and Applications, pp. 525–532 (2008)

    Google Scholar 

  19. Hatch, R.: Synergism of gps code and carrier measurements. In: Proceedings of the 3rd International Geodetic Sypomsium on Satellite Doppler Positioning, Las Cruces, New Mexico, vol. 2, pp. 1213–1232 (1982)

    Google Scholar 

  20. Huang, T., Netravali, A.: Motion and structure from feature correspondences: a review. Proceedings of the IEEE 82(2), 252–268 (1994), doi:10.1109/5.265351

    Article  Google Scholar 

  21. Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 651–670 (1996)

    Article  Google Scholar 

  22. Iwatsuki, M., Okiyama, N.: A new formulation of visual servoing based on cylindrical coordinate system with shiftable origin. In: IEEE/RSJ International Conference on Intelligent Robots and System, vol. 1, pp. 354–359 (2002), doi:10.1109/IRDS.2002.1041414

    Google Scholar 

  23. Jun, M., Roumeliotis, S., Sukhatme, G.: State estimation of an autonomous helicopter using Kalman filtering. In: Proc. 1999 IEEE/RSJ International Conference on Robots and Systems, IROS 1999 (1999)

    Google Scholar 

  24. Kelly, R.: Robust asymptotically stable visual servoing of planar robots. IEEE Transactions on Robotics and Automation 12(5), 759–766 (1996)

    Article  Google Scholar 

  25. Krishnan, G., Nayar, S.K.: Towards a true spherical camera. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, (SPIE) Conference Series, vol. 7240 (2009), doi:10.1117/12.817149

    Google Scholar 

  26. Lefferts, E., Markley, F., Shuster, M.: Kalman filtering for spacecraft attitude estimation. AIAA Journal of Guidance, Control and Navigation 5(5), 417–429 (1982)

    Article  Google Scholar 

  27. Lim, J., Barnes, N.: Directions of egomotion from antipodal points. In: CVPR. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  28. Lobo, J., Dias, J.: Vision and inertial sensor cooperation using gravity as a vertical reference. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1597–1608 (2003)

    Article  Google Scholar 

  29. Maddern, W., Wyeth, G.: Development of a Hemispherical Compound Eye for Egomotion Estimation. In: Australasian Conference on Robotics & Automation (2008)

    Google Scholar 

  30. Mahony, R., Hamel, T., Pflimlin, J.M.: Non-linear complementary filters on the special orthogonal group. IEEE Transactions on Automatic Control 53(5), 1203–1218 (2008), doi:10.1109/TAC.2008.923738

    Article  MathSciNet  Google Scholar 

  31. Martin, P., Salaün, E.: An invariant observer for earth-velocity-aided attitude heading reference systems. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea (2008)

    Google Scholar 

  32. Nayar, S.K.: Catadioptric omnidirectional camera. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 482 (1997), http://doi.ieeecomputersociety.org/10.1109/CVPR.1997.609369

  33. Roberts, J.M., Corke, P.I., Buskey, G.: Low-cost flight control system for small autonomous helicopter. In: Australian Conference on Robotics and Automation, Auckland, November 27-29, pp. 71–76 (2002)

    Google Scholar 

  34. Schill, F., Mahony, R., Corke, P., Cole, L.: Virtual force feedback teleoperation of the insectbot using optical flow. In: Kim, J., Mahony, R. (eds.) Proc. Australian Conf. Robotics and Automation (2008), http://www.araa.asn.au/acra/acra2008/papers/pap159s1.pdf

  35. Strelow, D., Mishler, J., Koes, D., Singh, S.: Precise omnidirectional camera calibration. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 689 (2001), http://doi.ieeecomputersociety.org/10.1109/CVPR.2001.990542 , doi:10.1109/CVPR.2001.990542

  36. Sukhatme, G.S., Roumeliotis, S.I.: State estimation via sensor modeling for helicopter control using an indirect Kalman filter. In: Int.Conf. Intelligent Robotics, IROS (1999)

    Google Scholar 

  37. Tahri, O., Mezouar, Y., Chaumette, F., Corke, P.: Generic decoupled image-based visual servoing for cameras obeying the unified projection model. In: IEEE International Conference on Robotics and Automation (ICRA 2009), pp. 1116–1121 (2009), doi:10.1109/ROBOT.2009.5152359

    Google Scholar 

  38. Vasconcelos, J., Silvestre, C., Oliveira, P.: A nonlinear observer for rigid body attitude estimation using vector observations. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, July 2008, pp. 8599–8604 (2008)

    Google Scholar 

  39. Vik, B., Fossen, T.: A nonlinear observer for GPS and INS integration. In: Proc. IEEE Conf. on Decisioin and Control, pp. 2956–2961 (2001)

    Google Scholar 

  40. Ying, X., Hu, Z.: Can we consider central catiodioptric cameras and fisheye cameras within a unified imaging model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 442–455. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  41. Zhang, H., Ostrowski, J.P.: Visual servoing with dynamics: Control of an unmanned blimp. In: Proceedings of the IEEE Internation Conference on Robotics and Automation, Detroit, Michigan, U.S.A., pp. 618–623 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corke, P., Mahony, R. (2011). Sensing and Control on the Sphere. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19457-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19456-6

  • Online ISBN: 978-3-642-19457-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics