Abstract
We propose a constructive control design for stabilization of non-periodic trajectories of underactuated mechanical systems. An important example of such a system is an underactuated “dynamic walking” biped robot walking over rough terrain. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to higher degree-of-freedom robots over arbitrary terrain and other impulsive mechanical systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vukobratovic, M., Borovac, B.: Zero-moment point – thirty five years of its life. International Journal of Humanoid Robotics 1(1), 157–173 (2004)
McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9(2), 62–82 (1990)
Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)
Byl, K., Tedrake, R.: Approximate optimal control of the compass gait on rough terrain. In: Proc. of the IEEE International Conference on Robotics and Automation, Pasadena, CA (2008)
Iida, F., Tedrake, R.: Minimalistic control of a compass gait robot in rough terrain. In: Proc. of the IEEE International Conference on Robotics and Automation, Kobe, Japan (2009)
Byl, K., Shkolnik, A., Roy, N., Tedrake, R.: Reliable dynamic motions for a stiff quadruped. In: Proc. of the 11th International Symposium on Experimental Robotics (ISER), thens, Greece (2008)
Goswami, A., Espiau, B., Keramane, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Autonomous Robots 4(3), 273–286 (1997)
Asano, F., Yamakita, M., Kamamichi, N., Luo, Z.W.: A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Transactions on Robotics and Automation 20(3), 565–573 (2004)
Spong, M., Holm, J., Lee, D.: Passivity-based control of bipedal locomotion. IEEE Robotics and Automation Magazine 14(2), 30–40 (2007)
Hurmuzlu, Y., Moskowitz, G.: The role of impact in the stability of bipedal locomotion. Dynamics and Stability of Systems 1, 217–234 (1986)
Grizzle, J., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control 46(1), 51–64 (2001)
Westervelt, E., Grizzle, J., Koditschek, D.: Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control 48(1), 42–56 (2003)
Wisse, M., Schwab, A., van der Linde, R., van der Helm, F.: How to keep from falling forward: elementary swing leg action for passive dynamic walkers. IEEE Transactions on Robotics 21(3), 393–401 (2005)
Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)
Hobbelen, D., Wisse, M.: A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm. IEEE Transactions on Robotics 23(6), 1213–1224 (2007)
Hauser, J., Chung, C.: Converse Lyapunov function for exponential stable periodic orbits. Systems and Control Letters 23, 27–34 (1994)
Banaszuk, A., Hauser, J.: Feedback linearization of transverse dynamics for periodic orbits. Systems and Control Letters 26, 95–105 (1995)
Shiriaev, A.S., Freidovich, L.B., Manchester, I.R.: Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems. Annual Reviews in Control 32(2), 200–211 (2008)
Freidovich, L.B., Shiriaev, A.S., Manchester, I.R.: Stability analysis and control design for an underactuated walking robot via computation of a transverse linearization. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, July 6-11 (2008)
Shiriaev, A.S., Freidovich, L.B., Manchester, I.R.: Periodic motion planning and analytical computation of transverse linearizations for hybrid mechanical systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008)
Leonov, G.: Generalization of the Andronov-Vitt theorem. Regular and chaotic dynamics 11(2), 281–289 (2006)
Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)
Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. John Wiley and Sons, New Jersey (2006)
Hurmuzlu, Y., Marghitu, D.: Rigid body collisions of planar kinematic chains with multiple contact points. The International Journal of Robotics Research 13(1), 82–92 (1994)
Shiriaev, A., Perram, J., Canudas-de-Wit, C.: Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach. IEEE Transactions on Automatic Control 50(8), 1164–1176 (2005)
Spong, M.: Partial feedback linearization of underactuated mechanical systems. In: Proc. of International Conference on Intelligent Robots and Systems, Munich, Germany (2004)
Kwon, W., Bruckstein, A., Kailath, T.: Stabilizing state-feedback design via the moving horizon method. International Journal of Control 37(3), 631–643 (1983)
Grizzle, J., Choi, J., Hammouri, H., Morris, B.: On observer-based feedback stabilization of periodic orbits in bipedal locomotion. In: Proc. Methods and Models in Automation and Robotics (2007)
http://groups.csail.mit.edu/locomotion/movies/cgexperiment20081222_4.mov .
Kalman, R.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5, 102–119 (1960)
Bainov, D., Simeonov, P.: Systems with Impulse Effects: Stability, Theory and Applications. Ellis Horwood, Chichester (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manchester, I.R., Mettin, U., Iida, F., Tedrake, R. (2011). Stable Dynamic Walking over Rough Terrain. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-19457-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19456-6
Online ISBN: 978-3-642-19457-3
eBook Packages: EngineeringEngineering (R0)