Skip to main content

A Passivity-Based Approach to Group Coordination in Multi-agent Networks

  • Conference paper
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 89))

Abstract

Surveillance and convoy tracking applications often require groups of networked agents for redundancy and better coverage. Important goals upon deployment include the establishment of a formation around a target and synchronization of the output (e.g., velocity). Although there exist distributed algorithms using only local communication that achieve these goals, they typically ignore destabilizing effects resulting from implementation uncertainties, such as network delays and data loss. This paper resolves these issues by introducing a discrete-time distributed design framework that uses a compositional, passivity-based approach to ensure \(l_2^m\)-stability regardless of overlay network topology, in the presence of network delays and data loss. For the restricted case of a regular overlay network topology, this work shows that asymptotic formation establishment and output synchronization can be achieved. Finally, simulations of velocity-limited quadrotor unmanned air vehicles (UAVs) are presented to show the performance in the presence of time-varying network delays and varying amounts of data loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arcak, M.: Passivity as a Design Tool for Group Coordination. IEEE Transactions on Automatic Control 52(8), 1380–1390 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bai, H., Arcak, M., Wen, J.T.: Rigid Body Attitude Coordination without Inertial Frame Information. Automatica 44(12), 3170–3175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chopra, N., Berestesky, P., Spong, M.W.: Bilateral Teleoperation over Unreliable Communication Networks. IEEE Transactions on Control Systems Technology 16(2), 304–313 (2008)

    Article  Google Scholar 

  4. Fax, J.A., Murray, R.M.: Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  5. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York, Inc. (2001)

    MATH  Google Scholar 

  6. Horn, R.A., Johnson, C.R.: Matrix Analysis. University Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Igarashi, Y., Hatanaka, T., Fujita, M., Spong, M.W.: Passivity-Based Output Synchronization in SE(3). In: American Control Conference, pp. 723–728 (2008)

    Google Scholar 

  8. Ihle, I.A.F., Arcak, M., Fossen, T.I.: Passivity-Based Designs for Synchronized Path-Following. Automatica 43(9), 1508–1518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kottenstette, N., Antsaklis, P.: Stable Digital Control Networks for Continuous Passive Plants Subject to Delays and Data Dropouts. In: 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, USA, pp. 4433–4440 (2007)

    Google Scholar 

  10. Kottenstette, N., Porter, J.: Digital Passive Attitude and Altitude Control Schemes for Quadrotor Aircraft. In: 7th International Conference on Control and Automation, pp. 1761–1768 (2009)

    Google Scholar 

  11. Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital Control of Multiple Discrete Passive Plants over Networks. International Journal of Systems, Control and Communications (IJSCC): Special Issue on Progress in Networked Control Systems (2009)

    Google Scholar 

  12. Lawrence, D.A., Frew, E.W., Pisano, W.J.: Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control. Journal of Guidance, Control, and Dynamics 31(5), 1220–1229 (2008)

    Article  Google Scholar 

  13. LeBlanc, H., Eyisi, E., Kottenstette, N., Koutsoukos, X., Sztipanovits, J.: A Passivity-Based Approach to Deployment in Multi-Agent Networks. In: 7th International Conference on Informatics in Control, Automation and Robotics, vol. 1, pp. 53–62 (2010)

    Google Scholar 

  14. Niemeyer, G., Slotine, J.J.E.: Telemanipulation with Time Delays. International Journal of Robotics Research 23(9), 873–890 (2004)

    Article  Google Scholar 

  15. Olfati-Saber, R.: Flocking for Multi-agent Dynamic Systems: Algorithms and Theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  16. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and Cooperation in Networked Multi-agent Systems. Proceedings of the IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  17. Ren, W., Beard, R., Atkins, E.: A Survey of Consensus Problems in Multi-agent Coordination. In: Proceedings of the American Control Conference, vol. 3, pp. 1859–1864 (2005)

    Google Scholar 

  18. van der Schaft, A.J.: L2-Gain and Passivity in Nonlinear Control. Springer-Verlag New York, Inc., Secaucus (1999)

    Google Scholar 

  19. Stramigioli, S., Secchi, C., van der Schaft, A.J., Fantuzzi, C.: Sampled Data Systems Passivity and Discrete Port-Hamiltonian Systems. IEEE Transactions on Robotics 21(4), 574–587 (2005)

    Article  Google Scholar 

  20. Wang, W., Slotine, J.J.: Contraction Analysis of Time-Delayed Communications and Group Cooperation. IEEE Transactions on Automatic Control 51(4), 712–717 (2006)

    Article  MathSciNet  Google Scholar 

  21. Zames, G.: On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems Part One: Conditions Derived Using Concepts of Loop Gain, Conicity, and Positivity. IEEE Transactions on Automatic Control 11(2), 228–238 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

LeBlanc, H., Eyisi, E., Kottenstette, N., Koutsoukos, X., Sztipanovits, J. (2011). A Passivity-Based Approach to Group Coordination in Multi-agent Networks. In: Cetto, J.A., Ferrier, JL., Filipe, J. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19539-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19539-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19538-9

  • Online ISBN: 978-3-642-19539-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics