Skip to main content

An Efficient and Flexible Approach to Resolution Proof Reduction

  • Conference paper
Hardware and Software: Verification and Testing (HVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6504))

Included in the following conference series:

Abstract

A resoution proof is a certificate of the unsatisfiability of a Boolean formula. Resolution proofs, as generated by modern SAT solvers, find application in many verification techniques. For efficiency smaller proofs are preferable over larger ones. This paper presents a new approach to proof reduction, situated among the purely post-processing methods. The main idea is to reduce the proof size by eliminating redundancies of occurrences of pivots along the proof paths. This is achieved by matching and rewriting local contexts into simpler ones. In our approach, rewriting can be easily customized in the way local contexts are matched, in the amount of transformations to be performed, or in the different application of the rewriting rules. We provide an extensive experimental evaluation of our technique on a set of benchmarks, which shows considerable reduction in the proofs size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amjad, H.: Compressing Propositional Refutations. In: AVoCS, pp. 7–18 (2006)

    Google Scholar 

  2. Amjad, H.: Data Compression for Proof Replay. J. Autom. Reasoning 41(3/4) (2008)

    Google Scholar 

  3. Amla, N., McMillan, K.: Automatic Abstraction Without Counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-Time Reductions of Resolution Proofs. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 114–128. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bruttomesso, R., Rollini, S.,Sharygina, N., Tsitovich, A.: Flexible Interpolation with Local Proof Transformations. In: ICCAD (2010), http://www.inf.usi.ch/postdoc/bruttomesso/ICCAD2010 (to appear)

  6. Cotton, S.: Two Techniques for Minimizing Resolution Proofs. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 306–312. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Restructuring Resolution Refutations for Interpolation. Technical report, ETH (2008)

    Google Scholar 

  8. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant Strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Henzinger, T., McMillan, K.L., Jhala, R., Majumdar, R.: Abstractions from Proofs. In: POPL (2004)

    Google Scholar 

  10. Jhala, R., McMillan, K.L.: Interpolant-Based Transition Relation Approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. McMillan, K.L.: An Interpolating Theorem Prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Sinz, C.: Compressing Propositional Proofs by Common Subproof Extraction. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 547–555. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Sinz, C., Kaiser, A., Kuchlin, W.: Formal Methods for the Validation of Automotive Product Configuration Data. AI EDAM 17(1), 75–97 (2003)

    Google Scholar 

  16. Tseitin, G.: On the Complexity of Proofs in Propositional Logic. Automation of Reasoning: Classical Papers in Computational Logic 2, 1967–1970 (1983)

    Google Scholar 

  17. Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications. In: DATE (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rollini, S.F., Bruttomesso, R., Sharygina, N. (2011). An Efficient and Flexible Approach to Resolution Proof Reduction. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds) Hardware and Software: Verification and Testing. HVC 2010. Lecture Notes in Computer Science, vol 6504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19583-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19583-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19582-2

  • Online ISBN: 978-3-642-19583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics