McFLAT : A PROFILE-BASED FRAMEWORK FOR MTLAB LOOP
ANALYSIS AND TRANSFORMATIONS

by
Amina Aslam

School of Computer Science
McGill University, Montreal

August 2010

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright © 2010 Amina Aslam

Abstract

Parallelization and optimization of the AdLAB ® programming language presents several
challenges due to the dynamic nature oRIMAB. Since MATLAB does not have static
type declarations, neither the shape and size of arrayghaedoop bounds are known at
compile-time. This means that many standard array depeedests and associated trans-
formations cannot be applied straight-forwardly. On theeothand, many MTLAB pro-
grams operate on arrays using loops and thus are ideal eeslidr loop transformations
and possibly loop vectorization/parallelization.

This thesis presents a new framework, MafF, which uses profile-based training runs to
determine likely loop-bounds ranges for which specializetsions of the loops may be

generated. The main idea is to collect information aboutenkesl loop bounds and hot

loops using training data which is then used to heuristiaddicide upon which loops and

which ranges are worth specializing using a variety of loapgformations.

Our McR.AT framework has been implemented as part of the Mglextensible compiler
toolkit. Currently, MCcR.AT is used to automatically transform ordinaryaAM.AB code into
specialized MTLAB code with transformations applied to it. This specializedecan be
executed on any MrLAB system, and we report results for four execution engineshMa
work’s proprietary MATLAB system, the GNU Octave open-source interpreter, Mc&
McVM interpreter and the McVM JIT. For several benchmarke, ebserved significant
speedups for the specialized versions, and noted that laogformations had different
impacts depending on the loop range and execution engine.

This thesis reports on the design and implementation of MdFla framework that is
designed to study the effect of various loop transformatmmdifferent loop-bound ranges

by introducing loop-level specializations inAVILAB programs.

Résum é

La parallelisation et dptimisation du langage de programmation informatiquer M ®
repesente plusieursédis compte tenu du caraee dynamique de ce dernier.

Puisque M\TLAB ne posede pas deé&tlaration de type statique, ni son profil et la taille
des matrices ni les boucles limites, sont connus au temp®mpilation. Cela signifie
gue plusieurs tests standakbsde la @pendance des matrices et de ses transformations
assockes ne peuvent pa€ appliqes dans une magie directe. Dautre part, plusieurs
programmes MTLAB sont of@rés sur les matrices en utilisant les boucles et donc sont
des candidats &hls pour la transformation en boucle et possiblement ltoxieation en
boucle/parallelisation.

Cette hypotkse pesente un nouveau cadre, M@¥, qui execute des entrainements bases
sur des profils afin de&derminer la po&e de€ventuelles boucles-limites pour qui des ver-
sions sgciali®es des boucles pourraiesite”gerérées. Lidée principale est de faire une
collecte dinformation concernant les boucles en observation ainsilesiboucles chauds
en capitalisant sur les do@es dentrainement qui sont ensuite utiiss pour dcider heu-
ristiguement sur quels boucles et limites il faut séaaliser en utilisant une vaéte de
transformateurs de boucles.

Notre cadre McEAT aéte implemené en tant que composant de Mgtk extensible com-
piler toolkit. Actuellement, McEAT, est utili® pour transformer automatiqguement le code
ordinaire MATLAB en code s@ciali€ MATLAB avec des transformations applegsa ce
dernier. Ce code §giali€ pourrait ensuitetfe execugé sur tout sy&me matlab et nous
livrons les ésultats de quatre moteur®grecution, Mathwork’s proprietary MrLAB sys-
tem, le GNU Octave source-libre integpe, linterpete McVM de mclab et le McVM

JIT. Pour plusieurs re@wes, nous observons une rapdgignificative pour les versions
speciali®es, et on note que les transformations en boucle ont egratiffs impacts qui
dépendent de la limite des boucles et du moté@xdcution.

Ce nmémoire se focalise sur le dessin @mplémentation de McEAT, un cadre qui est
désigre pourétudier les effets de plusieurs transformations en bowtlplasieurs niveaux

de boucles-limites en introduisant de€sjalisations au niveau des boucles dans les pro-
grammes MTLAB.

Acknowledgements

This work was supported, in part, by the Natural Science€anyineering Research Coun-
cil of Canada (NSERC).

| am thankful to my supervisor, Laurie Hendren, whose eragemment, guidance and sup-

port from the initial to the final level enabled me to developuaderstanding of the prob-
lem.

| would like to thank all the members of the MgB team for providing the basis which
McFLAT uses.

| would also like to thank my parents, siblings and my friendaBAhmad for always
encouraging me and believing in me.

Vi

Table of Contents

Abstract i
Résune il
Acknowledgements \
Table of Contents vii
List of Figures Xi
List of Tables Xiii
Table of Contents XV
1 Introduction 1

1.1 Contributions. e

1.2 ThesisOutline e

2 Background 5
2.1 The MATLABLanguage. v i i i it it et e

2.1.1 MaTLAB's Execution Environment. 6

Vil

2.1.2 SupportedFeatures. e 6

2.1.3 MATLAB'sControlFlow 8

214 FOrLoops e e e 9
215 Syntax e e 9
2.1.6 Description. 9
2.1.7 Array and Array Operations inMLAB 11

2.1.8 MATLABCodeExamples. 12
2.1.9 Loop Optimization Challenges. 15
The MclaB Framework 16
221 OVEIVIEW. o 17

MCcFLAT: A Framework for Loop Analysis and Transformations for MATLAB 19

3.1
3.2
3.3
3.4

3.5

3.6

Introduction. 19
Overall Architecture 19
Profiler e 21
Range Estimatar. e 26
3.4.1 Algorithm of Range Estimator 27

Dependence Analysis. e 29
351 ExtendedGCDTest 30
3.5.2 SVPC: Single Variable Per Constraint Test. 31

Loop Transformations. 33
3.6.1 DistanceVector 34
3.6.2 LoopReversal. 35
3.6.3 Looplinterchange. 35

viii

3.6.4 Legality of Unimodular Transformations 36

3.7 MCcCFLAT: As a Test-Bed for Loop Transformations Applicati 37
3.8 Outputof MCEAT e e 39
3.9 ParallelismDetection 41
3.9.1 TypesofDependency. 42
3.10 Limitations of MCEAT 46
Experimental Results 49
4.1 Benchmarks and Static Information 50
4.2 Performance Study for Standard Loop Transformations. 50
4.3 Performance study for Parallel ForLoops. 60
Related Work 63
5.1 Efficient And Exact Dependence Analysis. 64
5.2 Loop Transformations. 66
5.3 Impactof Loop Transformations 67
5.4 Program Specializations o o 68
5.5 Automatic Parallelism Detection and Vectorization. 70
5.6 Adaptive Compilation 71
Conclusions and Future Work 73
6.1 Conclusions. 73
6.2 Future Work. 74
User Manual 77
Al Flags. e 77

Bibliography

79

2.1

3.1
3.2
3.3
3.4
3.5
3.6

List of Figures

Structure Of The McLab Framework. 18
Structure of the MCFLAT Framework. 20
Pictorial Example of Ranges and Subranges. 28
Exampleof LoopReversal.. o o oo 35
Example of Loop Interchange. 36
Example of Loop Fission.. 38
Example of Loop Fusion. 39

Xi

Xii

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

List of Tables

Description and Source of Benchmarks. 51
Characteristics of Benchmarks. 52
Characteristics of LoopsinBenchmarks 53
Mathworks’ MATLAB Execution Times and Speedups 54
Octave Execution Times and Speedups. 55
McVM(JIT) Execution Times and Speedups 56
McVM(Interpreter) Execution Times and Speedups 56

Mathworks’ MATLAB Execution Times and Speedups with Parallel Loop$1

Xiii

Xiv

List of Listings

2.1 AMATLAB for LoopExample. 10
2.2 A MAaTLAB for Loop Example with Specific Values Assigned from a Vecfidy
2.3 A MaTLAB for Loop Example with Loop Index Variable Re-assigned. 10
2.4 Array Addressing or Indexing in MATLAB. 11
25 AMATLABprogramexample. 13
3.1 Instrumented SourceFile. 23
3.2 Instrumented Source File with Variables Written in Loolo 24
3.3 Loop Profiling Information(.xml) 25
3.4 Format of Predicted Loop-Bounds Ranges (xml) File. 28
3.5 Extended GCDExample 30
3.6 SVPCExample. e 31
3.7 Format of Dependence Summary (xml)File. 32
3.8 Distance VectorExampleo oL 34
3.9 Legality TestExample. 36
3.10 A MATLAB loop with Annotated LoopBody 38
3.11 OriginalCode. e 40
3.12 SpecializedCode e 40

XV

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
4.1

4.2

Flow Dependency Example. 43

Anti Dependency Example o 00 43
Input Dependency Example L. 43
Output Dependency Example 44
Syntax of Par-for loop in WrLAB L. 44
Example of Non-Parallelizable for Loop. 45
Example of Parallelizable for Loap. 45
Example of Invalid parforLoop. 46
Example of Invalid parforLoop. 46
LagrchebBenchmark 57
MbrtBenchmark. 59

XVi

Chapter 1

Introduction

MATLAB is a high-level, untyped and interpreted language whiclommroonly used by
scientists and engineers because of its ease of use, Wglsimtax for arrays, and a rich
collection of built-in library functions. Scientific progms often use a collection of loops,
which may be in sequence and/or nested to perform taskspieulimes. Most execution
time in scientific programs is spent in loogggo06. MATLAB is not necessarily opti-
mized for the use of loops and some of the slowest blocks of ¢tbat inflate M\TLAB
program execution time arfer/while loops. Therefore, compiler analysis and loop
optimization techniques are required to make the executfdoops faster and to intro-
duce parallelism so as to take advantage of multi-core CPUSRGPU(General Purpose
Graphic Processing Unit) computing capabilities.

Recently, there has been a tremendous increase in the popoladynamic languages
such as Python, Ruby, PHP, JavaScript andrM\B. These languages are developed
with programmer convenience in mind. This ease of use conisanprice, which is,
poor execution performance as compared to statically-dechfanguages (e.g.: C, C++,
Fortran, etc.).

McFLAT, A framework for loop Analysis and Transformations is a comgnt of a larger
effort known as the MckB project, being developed by Sable Lab at McGill Univer-

lwww.sable.mcgill.ca/mclab

www.sable.mcgill.ca/mclab

Introduction

sity. The overall goal of MckB is to find ways to improve the performance, usefulness
and accessibility of current scientific programming largesg The MclaB team currently
focuses its efforts on the MLAB programming language and its extensions e.g. Aspect-
Matlab [TAH10].

Tuning a critical loop in a scientific program can lead to angigant reduction in its exe-
cution time. The dynamic nature of MLAB programming language poses several chal-
lenges for optimizations including loop transformations oop vectorization/paralleliza-
tion. Since MATLAB does not have static type declarations, neither the shapsiaa of
arrays, nor the loop bounds are known at compile-time. Tleama that many standard ar-
ray dependence tests and associated transformationstdenapplied straight-forwardly.

This thesis presents a new framework, MafF, which uses profile-based training runs to
determine likely loop-bounds ranges for which specializetsions of the loops may be
generated. The main idea is to collect information requfcedoop optimizations using
training data and then decide heuristically which loop lmsuare important. The resulting
output is a set of programs with valid loop transformatiopglied for important predicted
loop-bounds ranges.

1.1 Contributions
The McH.AT project makes the following contributions:
» Design and implementation of t&ofiler which instruments the MrLAB programs

and collects information about the loop bounds and progestufes.

» Design and implementation of tHeange Estimatothat predicts important loop-
bound ranges based on profiled information.

* Implementation of a set of efficient dependence testerstierchine dependence be-
tween same array accesses for important predicted randes.cdmponent deter-
mines whether loop transformation(s) can be applied or not.

1.2. Thesis Outline

» Design and implementation of the legality tester that ahetlees which loop trans-
formation(s) and in what order should be applied.

» Design and implementation of th@op Transformethat introduces legal or programmer-

suggested loop transformations into theAB code for important predicted ranges.

» Design and implementation of an automatic parallelizatietection mechanism in
the context of the MTLAB programming language.

» A detailed analysis of the impact of loop transformationsdifferent loop-bounds
ranges and different execution engines. i.e. Mathworkigpopetary MATLAB sys-
tem, the GNU Octave open-source interpreter, Mels McVM interpreter and the
McVM JIT(McJIT).

The McH.AT framework, has been implemented as part of the MxExtensible compiler
toolkit. Currently, MCcR.AT is used to automatically transform ordinaryaM.AB code into
specialized MTLAB code with valid loop transformations applied for importpredicted
loop-bounds ranges. This specialized code can be execntadyoMATLAB system, and
we report results for four execution engines, Mathwork'sporetary MATLAB system,
the GNU Octave open-source interpreter, Mels McVM interpreter and the McVM
JIT(McJIT). For several benchmarks, we observed signifipanformance speedups for
the specialized versions, and noted that loop transfoomsitiad different impacts depend-
ing on the loop range, execution engine and the source profgatures.

1.2 Thesis Outline

This thesis is divided into 6 chapters (including this idotion chapter)Chapter2 gives

a general overview of MTLAB programming language, its features and execution model.

It then discusses the Me@B project, its various components and how MeF fits into
the overall picture. IlChapter3 we present the overall architecture of the Maf frame-
work and its different phases in detaiChapter4 reports results for four execution en-

gines, Mathwork’s proprietary MrLAB system, the GNU Octave open-source interpreter,

3

Introduction

McLAB’s McVM interpreter and the McVM JIT(McJIT) and discusses tmpact of loop
transformations on different loop-bound ranges and diffeexecution engineChapter5
discusses related work done in the context of this thesisiwinelped us to form the base
of our research, and the ways in which our approach diffetls thiem. FinallyChapter6
presents our conclusions and outlines some possible frggearch work in this domain.

Chapter 2

Background

In this chapter we present background information helpfuthte understanding of this
thesis. We begin with a brief overview of theAviLAB programming language, its impor-
tance for the scientific and engineering community, andxe&cetion environment. This
is followed by a discussion on MLAB for loop construct, arrays indexing and array
operations, and a programming code example.

This is followed by a discussion of dynamic languages andadsociated optimization
challenges particularly in the context of loop transforiorag. \We then present an overview
of the McLaB project talking about its various components and where &S AT fits
into the overall picture.

2.1 The MATLAB Language

MATLAB is a numerical computing environment, originally inventedhe late 1970s by
Cleve Moler, then a professor of computer science at the Wsityeof New Mexico. He
designed the language to give his students access to sorhe pbwer of FORTRAN,
without having to learn the FORTRAN language itsélfdtb]. Developed for providing an
easier numerical computing environment to studentsTIMB offered flexible syntactic
constructs, which also made it popular amongst other coatipuglly-intensive research

5

Background

areas. Since then, MLAB is widely used in the academic, scientific and engineering
communities.

MATLAB is a very popular technical computing environment and atfogeneration pro-
gramming language. It is dynamically-typed, weakly-typedcedural language. The
name MATLAB stands foMATrix LABoratory because its basic data element is a matrix.
MATLAB provides a large library of common matrix operations (eagldition, inversion,
multiplication). In addition to its matrix orientation NMfLAB incorporates many features
found in other dynamic languages, such as the runtime oreaficlosures. It also allows
implementation of algorithms, plotting of functions andajecreation of user interfaces,
and interfacing with programs written in other languagesluding C, C++, and Fortran.

2.1.1 MATLAB'’s Execution Environment

In the MATLAB environment, we can write and execute programs, or sctipds,contain
MATLAB commands, observe the results, and then execute anotherAd command
that interacts with the information already in the workspathis interactive environment
does not requires a formal compilation, linking/loadingl @xecution process. However,
errors in the syntax of MTLAB commands are detected when thaMAB environment
attempts to translate the command, and logical errors leaecution errors when the
MATLAB environment attempts to execute the command.

2.1.2 Supported Features

The Mathworks implementation of MLAB offers a very rich feature set. The short list
below enumerates some of its most used featuesd, CB09:

» Uniform treatment of all basic types as matrices
* Optimized built-in matrix operations

» Advanced graphic capabilities.

2.1. The MATLAB Language

Function handles, inline functions, feval (for functiorakiation)
Support for variety of industry standard file formats angeotcustom file formats
Extensive library of numerical algorithms

Creation of custom tool boxes

Interactive mode with read-eval-print loop

Code editor and debugging environment

Effective documentation search system

Built-in support for complex-numbers

Repetition structureor and while loops

Range expressions and array slicing/reshaping

Nested function definitions

Creation of closures from nested functions

Creation of closures from lambda expressions

Graphical 2D and 3D plotting tools

C and FORTRAN function wrapping

MATLAB has evolved tremendously over the years. In addition tongeadded or modi-
fied several internal algorithm&/poo0€), the MATLAB command interpreter now includes

acceleration features, collectively call@ie MATLAB JIT-Accelerator]Mat0Z. The ac-
celerator has increased the speed of loop operations bnpiateng and executing code
within a loop as a whole, rather than line by line. Howevemike use of JIT Accelerator,

loop operation code must follow specific guidelines, if gngsiidelines are not followed,

loop operation code is interpreted at a much slower lindiiyrate [Mioo0g.

Background

MATLAB code having loops, benefit from AtLAB’s JIT-Accelerator if it has the follow-
ing propertiesPBOY).

Only for loops are optimized.

The loop should contain specific logical, character strdauble-precision, and less
than 64-bit integer data types.

The loops can only use arrays having three or less dimession
All variables used within a loop must be defined prior to l@xecution.

Memory for all variables within a loop is preallocated, aalbthe variables should
maintain constant size and data type throughout the execatithe loop.

Loop indices must be scalar quantities.
Only built-in MATLAB functions can be called with-in a loop.

Conditional statements withthen-elseor switch-caseonstructions should complex
conditions, only scalar comparisons are optimized.

2.1.3 MATLAB’s Control Flow

Computer programming languages offer features that allantg@ontrol the flow of com-

mand execution using decision making structures. Controd ifovery important since it

lets past computations influence future operationsTMB offers five decision making or

control flow structures.

for Loops.

while Loops.

if-else-end construction.
switch-case construction.

try-catch block.

2.1. The MATLAB Language

2.1.4 For Loops

In for loops the execution of a command or a group of commands isategea pre-
determined number of times. AftLAB provides following different syntax fdior loop
which are as follows.

2.1.5 Syntax

for y=initval: endval, statementgnd
for y=initval: stepval: endval, statemensnd

for y= arr, loop statementsnd

2.1.6 Description

The construct ‘for y=initval: endval, statementgnd ”, repeatedly executes one or more
MATLAB statements in a loop. The loop counter variapis initialized to valueinitval

at the start of the first pass through the loop, and autoniigticarements by 1 each time
through the loop. The program repeatedly iterates throtgiersents until eithey has
incremented to the valuendval or MATLAB encounters dreak or return instruction,
thus forcing an immediate exit of the loop. IfAMILAB encounters @ontinuestatement
in the loop body, it immediately exits the current iteratatnthe location of theontinue
statement, skipping any remaining code in that iteratiad,lzegins another iteration at the
start of the loop statements with the value of the loop cauntgemented by one.

The “ for y= arr loop statementsend ”, thisfor statement on each iteration creates a
column vectorindex from subsequent columns of arrayr. For example, on the first
iteration, the first column of arragrr would be assigned to column vector indexlex =
array(:,1). The loop executes for a maximumrmfimes, wheren is the number of columns

of arr. In the case otListing 2.2, where a row-vector is assigned to the index variable, the
loop would iterate 6 times, as there are six columns in theveetor and each time one
column would be assigned to column vector indedexand each column in thikisting

9

Background

A W N

2.2has one element.

The valuesnitval and endvalmust be real numbers as Insting 2.1, or arrays of real
numbers as ithisting 2.2, or can also be calls to functions that return the same. Theva
assigned tg is often used in the code within the loop, however it is rec@nded that you
do not assign tg in the loop code as ihisting 2.3.

The construct for y= initval: stepval: endval, statementsnd ”, is the same as the above
syntax, except that loop countgis incremented (or decremented wistepvals negative)
by the valuestepvalon each iteration through the loop. The vabkiepvalmust be a real
number or can also be a call to a function that returns a reabeu

for i=1:3:10
y=i"2;
end

Listing 2.1 A MATLAB for Loop Example

for i= [7,9,-1,3,3,5]
y=i i
end

Listing 2.2 A MATLAB for Loop Example with Specific Values Assigned from a Vector

for i=1:2
y=i"2;
i = 10;
end

Listing 2.3 A MATLAB for Loop Example with Loop Index Variable Re-assigned

McFLAT, handles the case where fioe loop has a range expression defined, as the upper
and lower bounds of the loop index variables are requiredtopute the dependence tests
and apply transformations aslumsting 2.1

10

2.1. The MATLAB Language

2.1.7 Array and Array Operationsin MATLAB

Arrays are a fundamental data structure thatTMAB uses to store and manipulate data.
An array in the context of the MrLAB programming language is the same as in any other
programming language, a list of numbers arranged in rowfoadlumns. The simplest
array(one-dimensional) is a row, or a column of numberseddled avector A more com-
plex array (two-dimensional) is a collection of numbersaged in rows and columns also
called amatrix. There are also two container data types catleldl arraysandstructures
which unlike arrays, allow grouping of dissimilar, but rield, arrays into a single variable.
Elements in an array can be addressed individually or insulps using subscripts. This
is useful when there is a need to redefine only some of the elsnoé the array, to use
specific elements in calculations, or when a subgroup of gm@ents is used to define a
new variable, this capability is referred togl&ing. The colon operator is used to address
a range of elements in arrays.

Listing 2.4 shows sample output of MLAB being run in interactive mode. In this exam-
ple, we show that the matrix variabMat can be indexed by using subscripts, similar to
the way two dimensional arrays are indexed in languageslbk@ (except that arrays in

MATLAB are stored in column-major order).

>>
>> Mat = [10 20 30 40; 50 60 70 80; 90 100 110 120; 130 140 150 160]

Mat =
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160

>>

>> Mat(1,4)

11

Background

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36

ans =
40

>>
>> Mat(;,1)
ans =

10
50
90
130

>> Mat(1, 2:3) = [7 7]
Mat =

1077 4

50 60 70 80

90 100 110 120
130 140 150 160

Listing 2.4 Array Addressing or Indexing in MATLAB

2.1.8 MATLAB Code Examples

The example shown ibisting2.5shows a MATLAB function that finds the Crank-Nicholson
solution to the one-dimensional heat equation. This fematould be invoked by inputting
theu = crnich(2.5, 1.5, 2, 321, 321); command at the prompt, or it could be called
from another function. This example demonstrates the uadarf loop, matrix multipli-

12

© 0 N o o B~ W N P

N RN NN R R R R R R R R R R
W N B O © 0 N o O » W N B O

2.1. The MATLAB Language

cation and exponentiation operators on line 72, array imgexsing subscripts on lines
78 and 93 and array indexing using colon operator on line 96te that MATLAB array
indices start from 1 instead of 0. Line 96 demonstrates tieeofi@postrophe transpose
operator, which performs a complex conjugate transpasitMATLAB has two transpose
operators. The apostrophe operator (e8f. performs a complex conjugate transposition.
It flips a matrix about its main diagonal, and also changesitpe of the imaginary com-
ponent of any complex elements of the matrix. The dot-appk& operator (e.gB.’),
transposes without affecting the sign of complex elemefitse vd = sixones(1, n);
statement creates a row vector of sized.initialized with all ones. The row vector is then
multiplied with a scalasl.

function U = crnich(a, b, ¢, n, m)

13

Background

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

%

% i. m is the number of grid points over [0, b],
%

% 0. U is the solution matrix.

%

% Source:

% Numerical Methods: MATLAB Programs,

% (c) John H. Mathews, 1995.

%

% Author:

% John H. Mathews (mathews@fullerton.edu).

%

% Date:

% March 1995.

%

% —

h = a/(n-1);

k = b/(m-1);

r=c¢2 +xk/h™2;

sl = 2+2/r;

s2 = 2Ir-2;

U = zeros(n, m); % initialize an n x m dimensional array U

for il = 2:(n-1)
% call the built-in function sin and assigns the value to arra y U
U(@i1, 1) = sin(pi *h« (i1-1))+sin(3 *pi *hx (i1-1));

end;

% creates a vector Vd with all of the values initialized to 1
Vd = sl*ones(1, n);

vd(l) = 1;

vd(n) = 1;

Va = -ones(1, n-1);
Va(n-1) = 0;

% creates a vector Vc with all the values initialized to -1
Vc = -ones(l, n-1);
Ve(l) = 0;

14

61
62
63
64
65
66
67
68

69
70

71
72

2.1. The MATLAB Language

Vb(l) = O;
Vb(n) = O;

for j1 = 22m
for i1 = 2:(n-1),
Vb(il) = U(i1-1, j1-1)+U(i1+1, j1-1)+s2 +U(i1, j1-1);
end;

X = tridiagonal(Va, Vvd, Vc, Vb);

Ul:in, j1) = X
end;

Listing 2.5 A MATLAB program example

2.1.9 Loop Optimization Challenges

Dynamic languages pose several optimization challengedaltheir semantics. They are
typically harder to optimize than their statically-congallcounterparts due to their dynamic
nature. That is, the semantics of dynamic languages malkedehto predict their exact
behavior at run-time.

MATLAB programs operate on arrays using loops and thus are goodlateslfor loop
transformations and possible loop vectorization/paiadéon. One of the challenges in-
volved in applying loop optimizations in dynamic languadjks MATLAB is that neither
the shape and size of arrays, nor the loop bounds are knovemgtile-time [AH10]. This
means that many standard array dependence tests, a preitesdar applying loop trans-
formations cannot be computed at compile-time.

To efficiently apply loop transformations in dynamic langas, optimizing compilers must
find ways to improve performance of these languages withmujpcomising the flexibility
that they offer to the programmer. Profile-based technitpaes been used in the past to
suggest recompilation with additional optimizations.

15

Background

2.2 The McLAB Framework

Dynamic languages are becoming increasingly popular. Camuhlgoamic languages in-
clude Python, Perl, PHP, Ruby, Scheme, Smalltalk amd'IMB. These languages do
not have static-type declarations, the variable types la@id values, the size and shape of
arrays and the loop bounds are unknown at compile time.

Recently, dynamic languages have started becoming mordywided due to the ease of
use and flexibility, that these offer to programmers as coppto statically-compiled lan-
guages. Dynamic languages put fewer constraints on thegroger and they achieve
more “work” per line of code and thus allow programmers to b#erproductive. Simi-
larly, MATLAB, another dynamic language is widely used for computatitensive tasks.
The combination of computational and visualization powekes it particularly useful for
scientists and engineers.

MATLAB is a very popular programming language for technical compguised by stu-
dents, engineers, and scientists in universities, resaastitutes, and industries all over
the world. It was designed for sophisticated matrix andaegperations, which are com-
mon in scientific and engineering applications. It alsomsfiesimple syntax that is familiar
to most engineers and scientists. However, this ease obusescwith a price, MTLAB ap-
plications are generally slower than those programmedstétically-compiled languages.
Keeping in mind the ease and fast development time that faegeages offer, there is a
strong desire in the compiler community to improve theif@enance.

The work presented in this thesis is a component of the Mcframework®. The McLaAB

framework provides an extensible set of compilation, asialgnd execution tools built
around the core MTLAB programming language. One goal of the M@_project is to

provide an open-source set of tools for the programminguaggs and compiler commu-
nity so that researchers (including our group) can devep domain-specific language
extensions and new compiler optimizations. A second go#) jgrovide engineers and
scientists with these new languages and compilers whicimare tailored to their needs

lwww.sable.mcgill.ca/mclab

16

www.sable.mcgill.ca/mclab

2.2. The MclaB Framework

and also give better performance.

2.2.1 Overview

The overall structure of the MolB framework is outlined irFigure 2.1

The framework comprises of an extensible front-end, a lhegh!} analyses engine, array
dependence analysis and loop transformation frameworlE(Mt, the topic of this thesis
is represented with a shaded box) and three back-ends.

Currently, there is support for the coreAVLAB language and also a complete extension
supporting AspectMatlabPH10]. The front-end and the extensions are built using our
group’s extensible lexer, Metalexé&§s09 and JastAdd EHO7]. There are three back-
ends: McFor, a FORTRAN code generatbidP]; a MATLAB generator (to use McAB as

a source-to-source compiler); and McVM, a virtual machima includes a simple inter-
preter and a sophisticated type-specialization basedaipier(McJIT), which generates
LLVM code [CBHV1(Q].

In this chapter, we talked about theA¥L.AB programming language, its features, execution
model and code example. We also discussed theAddtamework and how McEAT fits
in the overall picture.

In Chapter3, we discuss different components of the MeF framework in detail, in
Chapter4, we present experimental results obtained after applyingframework on a
selection of benchmarks.

17

Background

The McLab Framework

AspectMatlab Matlab Domain-Specific Languages
Extension |< - - - 4 Matlab 1 >
Frontend Extension

High Level Analyses

!

McLab IR
/ Mc\/l\/l\\
McFor McJIT Matlab Generator
Matlab—to—Fortran Analyses and *

Specialization

Converter Matlab
LLVM Code

¢ Generation
Fortran

Figure 2.1 Structure Of The McLab Framework.

18

Chapter 3

McFLAT: A Framework for Loop Analysis and
Transformations for MATLAB

3.1 Introduction

In this chapter, we provide a detailed overview of the key ponents of our MCEAT
framework, and we also discuss parallel loop detection endbntext of MATLAB pro-
gramming language and some current limitations of the freonie.

3.2 Overall Architecture

The overall structure of the MaRAT framework is outlined irFigure 3.1 Our ultimate
goal is to embed this framework in our McJIT system, howeverantly it is a stand-alone
source-to-source framework which uses the Melfront-end. The user provides both the
MATLAB program which they wish to optimize and a collection of reprgative inputs
(top of Figure 3.1). The output of the system is a collection of specializedypams (bot-
tom of Figure 3.1), where each specialized program has a different set offtvremations

19

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

Matlab Application
with optional loop
annotations(.m)

Training
Data

Programmer
Input

Instrumenter

Q@ Matlab VM
9

o

S Y

S

= Instrumented Loop Profiling
QEJ Matlab Application Information
S (-m) (.xml)

4(7) A\

=

Range Estimator

Predicted Important
Ranges (.xml)

Legality Tester
and
Loop Transformation

Dependence
Analyzer

Analysis and Transformations

- Dependence Transformed Matlab
§. Summary Application with
3 (:xml) Specialization(.m)
-
-

Figure 3.1 Structure of the McFLAT Framework.

20

3.3. Profiler

applied. The system also outputs a dependence summaryctofap, which is useful for
compiler developers.

The design of the system is centered around the idea thatraAg program is likely to be
used on very different sized inputs, and hence at run-timgdaevill have very different loop
bounds. Thus, our objective is to find important ranges fohdaop nest, and to specialize
the code for those ranges. Knowing the ranges for each digatian also enables us to
use very fast and simple dependence testers.

The important phases of MckT, as illustrated irFigure 3.1, are thelnstrumenteywhich
injects the profiling code, thRange Estimatowhich decides which ranges are important,
and theDependence Analyzer and Loop Transformer Enginghe next section we look
at each of these components in more detail.

3.3 Profiler

As illustrated in the phase labelétstrument and Profile in Figure 3.1, the Instrumenter
component is used to automatically inject instrumentasiod profiling code into a Mr-
LAB source file. This injection is done on the high-level stroetulR produced by the
McLAB front-end. In particular, we inject instrumentation to@sate a unique loop num-
ber to each loop, and to gather following information forle&mmop.

The lower bound of the iteration.

The loop increment.

The upper bound of the iteration.

The nesting level of the loop.

The time spent executing the loop.

List of variables that are written to in the loop body. Dyyite parallelism detection
phase, this list of variables is required to ensure thatiwithe list of indices for

21

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

the arrays, exactly one index involves the loop variableahdr variables used with
loop index variable to index an array should remain consiegt the entire execution
of the loop.

The MATLAB program resulting from this instrumentation is functiopa&quivalent to the
original code, but emits additional information that gextes training data required for the
next phase.Listing 3.1 shows the instrumented source code file of Bifir benchmark.
When a source file is passed to tmstrumentercomponent of McEAT, it traverses the
AST(Abstract Syntax Tree) of the program. During traveradden it encounters an AST
node which is an instance BbrStmt the instrumenter inserts a function cathiDataGen-
erator after the loop body.

The inserted function cakmlDataGenerators shown on lines 36 and 44. The first argu-
ment of the call is the name of .xml file which is generated ahds the same prefix as the
source file. The second argument indicates the loop indeéablamame, in case of nested
loop there are two loop index variables which are passed as@tenated string using the
MATLAB concatenation operatojj). The third argument to the call is lower bound of the
loop which in case of single loop is an integer value or théatde name but for a nested
loop it is an array of integers created by concatenationaiperThe fourth argument indi-
cates the upper bound of the loop which is the variable namgirigle loops and an array
of strings in case of a nested loop. The loop increment faghich is the fifth argument to
xmlIDataGeneratofunction is passed either as integer or an array of integgpsmding on
the nesting level of the loop. The sixth argument indicatedaop number which uniquely
identifies the loop in the program. The seventh argumentatds the maximum number
of loops in the instrumented program. The eighth argumeuresents the list of variables
that are written in the loop body. This is required for thegtlatism detection phase. In the
example fronListing 3.1, variables used to index the array are not rewritten withélbop
body, thus thé/ariablesUsecargument to the call is empty. In cases where variables are
written to within the loop body, the function call looks like inListing 3.2 In Listing 3.2

j is assigned a value on line 6, so the last argument of theibumcall xmlDataGenerator

is the name of the variable written in the loop body which iis tase ig.

22

© 00 N o o b~ W N P

W oW W oW W W WRNNNNDNDRNDNNRNDNDNRNERE P B R B R R R
o 00 KA W N B O © ® N o 00 & ®W N P O © ® N O 00 M W N B O

3.3. Profiler

function U = finediff(a, b, ¢, n, m)

%
% This function M-file finds the finite-difference solutio
% to the wave equation

%

% 2

% u(x,t) =cu(xt),

% tt xx

%

% with the boundary conditions

%

% u, t) =0, uf@ t) =0 for all 0 <t <hb,

%

% u(x, 0) = sin(pi *X)+sin(2 *pi xx), for all 0 < x < a,

%

% u (X, 0) =0 for all 0 < x < a.

%

0= mm

h = a/(n-1);

k = b/(m-1);

r = c ~k/h;

r2 =r?2;

22 = r2/2;

sl = 1-r2;

s2 = 2-2 *1°2;

U = zeros(n, m);

for i1l = 2:n-1,
U(@i1, 1) = sin(pi * h* (i1-1))+sin(2 *pi *hx (i1-1));
U(@il, 2) = s1 =(sin(pi *h=*(il-1))+sin(2 *pi *hx (i1-1)))+ ...
r22 =(sin(pi *hxil)+sin(2 *pi *h*il)+ ...
sin(pi *h=*(i1-2))+sin(2 *pi * hx (i1-2)));

end;

xmlDataGenerator(‘finediff' , L

23

121 (n - 1)! 11 0! 11 2!

)

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

37
38
39
40
41
42
43
44

o N oo o~ W N P

for il = 2:in-1,
for j1 = 3:m,
u(i1, j1) = s2 *U(i1, j1-1)+r2 *(U(i1-1, j1-1)+ ...
U(il+1, j1-1))-U@1, j1-2);
end;
end;
xmlDataGenerator(‘finediff' Lo, 11 (2, 3] Y, ([n, m]'),
(11 9 1,2 2"

Listing 3.1 Instrumented Source File

for i1 = 2:n-1,
U(@i1, 1) = sin(pi * h* (i1-1))+sin(2 *pi *h* (i1-1));
U(@il, 2) = s1 =(sin(pi *h=*(il-1))+sin(2 *pi *hx (i1-1)))+ ...
r22 =(sin(pi *hxil)+sin(2 *pi *h*il)+ ...
sin(pi *h=*(i1-2))+sin(2 *pi * h* (11-2)));
j=i1;
end;
xmlDataGenerator(‘finediff’ , i1, 2, (n-1), 1,0 1, 2 TN

Listing 3.2 Instrumented Source File with Variables Written in Loop Body

The xmlIDataGeneratolis a function that is called once the loop finishes its executi
Within this function various tags are created as showhigting 3.3, and loop data is
written to the .xml file. ThexcmIDataGenerators optimized for write operations. It writes
once to the .xml file when the number of loops is equal to theimam number of loops
in the program.

When the instrumented program is executed usingsdaIMB virtual machine, the profile
information is written to an .xml file. This .xml file is pergst, and so multiple runs
can be made, and each run will add new information to the Mellfisting 3.3 indicates
the structure and the profiled information generated afterMIATLAB source code file
injected with instrumentation code is run. The .xml file tgtavith RunNotag that indicate
the Date and TimeStamp of the ruasting 3.3 shows there are two loops in the program,

24

© 00 N O g B~ W N P

N NN NN B R R R R R R R R R
A W N P O © 0 N © U » W N B O

3.3. Profiler

and one of which is a nested loop. Th@opNotag indicates the loop number that uniquely
identifies the loop antlestingLeveindicate the level of the nested loop. For a loop with no
nesting there is just ondestedLoopag that contains the tag®werBoundUpperBound
andLooplincrementFactor The LowerBoundtag is comprised of the loop index variable
nameVariableNameand the value of lower bound. Similarly, thépperBoundcontains
the value that loop’s upper bound is assigned during theugxgrof the program. The tag
LoopIncrementFactocontains the factor by which the loop is incremented or deerged.
For the case, where we have a nested loop with one level ahgestere will be two counts
of the tagNestedLoop

<?xml version="1.0" encoding="utf-8"?>

<AD>
<RunNo TimeStamp="28-Jun-2010 19:08:10">
<LoopNo LoopNumber="1" NestingLevel="0" VariablesUsed= ">
<NestedLoop Number="1.0">
<LowerBound>
<VariableName>il</VariableName>
<start>2</start>
</LowerBound>
<UpperBound>
<start>22</start>
</UpperBound>
<LoopIncrementFactor>
<start>1</start>
</LooplncrementFactor>
</NestedLoop>
</LoopNo>
<LoopNo LoopNumber="2" NestingLevel="1" VariablesUsed= ">
<NestedLoop Number="2.0">
<LowerBound>

<VariableName>j1l</VariableName>
<start>2</start>

</LowerBound>

<UpperBound>

25

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

<start>23</start>
</UpperBound>
<LooplncrementFactor>
<start>1</start>
</LooplncrementFactor>
</NestedLoop>
<NestedLoop Number="2.1">
<LowerBound>
<VariableName>il</VariableName>
<start>2</start>
</LowerBound>
<UpperBound>
<start>22</start>
</UpperBound>
<LoopIncrementFactor>
<start>1</start>
</LooplncrementFactor>
</NestedLoop>
</LoopNo>
</RunNo>
</AD>

Listing 3.3 Loop Profiling Information(.xml)

The loop profiling information .xml file is then used as an inputhe next component
which is theRange Estimator

3.4 Range Estimator

The Range Estimators the first important component of the main part of MeF, the
Analysis and Transformations phase inFigure 3.1. The Range Estimator reads the loop
profiling information and determines which are the impartamges for each loop. The
important ranges are identified using Algoritdm The input to this algorithm is a hash
table containing all the observed values for all the loopbtae output is a list of important

26

3.4. Range Estimator

ranges. The basic idea is that for each loop, we extract therebd values for that loop,
partition the value space into regions and subregions, f@ewl identify subregions which
contain more values than a threshold.

3.4.1 Algorithm of Range Estimator

Algorithm 1 Algorithm for range estimation
Data Items
H (K,V) : Hash table with loop numbers as keys and list of obsdvalues
Procedure processLoopData(LooplD)
| + lookup(LoopID, H)// get all observed values for loop with LoopID
sort(l)
importantRanges- empty
R < computeRegions(min(l), max(l))
/I for each large region
forall rinR do
/I for each subregion (divide R into 10 equal parts)
for all sRin Rdo
if numIinRegion(l,sR)}> thresholdthen
PredVal«— maxval(sR)
add PredVal to importantRanges
end if
end for
end for
return(importantRanges)

We determine the regions and subregions as illustratéajure 3.2 The regions are pow-
ers of 10, starting with the largest power of 10 that is leas tihe smallest observed value,
and ending with the smallest power of 10 that is greater tharhighest observed value.
For example, if the observed upper bounds were in the ran@&o120000, then we would
choose regions of size 100, 1000, 10000 and 100000. Eadmnrsdgurther subdivided into
10 subregions. A subregion is considered important if thaler of observed values are
above a threshold, which can be set by the user. For our expets we used a threshold
of 30 % . When an important region is identified, the the maxinoloserved value from
the region is added to the list of important ranges.

27

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

1
2
3
4
5
6
7

Region Observed values arranged in sub-regions

1 100 200 300 400 500 600 700 800 900 1040
100-1000 ‘ ‘! | | MHiHW | [| i}” \

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000

1000-1000p ||| b ——

Figure 3.2 Pictorial Example of Ranges and Subranges

Listing 3.4 shows the format of .xml file which is generated as the Algonit is applied

on the profiled information. The .xml file generated durinig fthase is persistent, and so
multiple runs can be made, and each run will add new infonatinder theHD tag of
the .xml file. The .xml file starts witlRRunNotag that indicates the Date and TimeStamp
of the run. Listing 3.4 shows the important loop-bound ranges for loops in the @mogr
one of which is a single loop and the other one is a nested [dbpre are two instances
of the tagLoopNofor loop 10 which indicates that there are two important loop-bound
ranges predicted for loop.A. The tagLoopNohas two elementeoopNumbetthat indi-
cates the number that uniquely identifies the loop in the namgandLoopVariableName
which represents the name of the loop index variable. TreReggictedLowerBoundPre-
dictedUpperBoun@ndPredictedLooplncFactowithin the LoopNotag indicate important
values observed for the lower bound, upper bound and loaenment factor of loop D
respectively. Since loop 2 is a doubly-nested loop, so taexdwolLoopNotags with dif-
ferent value foL,oopNumbeelement. Which means there is one important value predicted
for the outer loop D and one important value observed for the inner lodp 2

<HD>
<RunNo TimeStamp="2010-08-12 22:29:39">
<LoopNo LoopNumber="1.0" LoopVariableName="i1">
<PredictedLowerBound Value="2"/>
<PredictedLooplncFactor Value="1"/>
<PredictedUpperBound Value="22"/>
</LoopNo>

28

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

3.5. Dependence Analysis

<LoopNo LoopNumber="1.0" LoopVariableName="i1">

<PredictedLowerBound Value="2"/>
<PredictedLooplncFactor Value="1"/>
<PredictedUpperBound Value="320"/>
</LoopNo>
<LoopNo LoopNumber="2.0" LoopVariableName="j1">
<PredictedLowerBound Value="2"/>
<PredictedLooplncFactor Value="1"/>
<PredictedUpperBound Value="23"/>
</LoopNo>
<LoopNo LoopNumber="2.1" LoopVariableName="i1">
<PredictedLowerBound Value="2"/>
<PredictedLooplncFactor Value="1"/>
<PredictedUpperBound Value="22"/>
</LoopNo>
</RunNo>
</HD>

Listing 3.4 Format of Predicted Loop-Bounds Ranges (.xml) File

3.5 Dependence Analysis

The data dependence testing problem is that of determinimgther two references to
the same array within a nest of loops may reference to the sd@neent of that array
[WoI90, ASUS8S.

Since we identify the upper loop bounds via our profiling ghase have chosen very
simple and efficient dependence testers:ektended GCD tesind thesingle variable per
constraint test Currently, we have found these sufficient for our small sddesfchmarks,
but we can easily add further tests as needed. In proceeéatigiss, we will explain the
theoretical aspects of above mentioned dependence teébtexaimples.

29

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

3.5.1 Extended GCD Test

We use Banerjee’s Extended GCD Te&8[J85 Wol90] as a pre-processing step for our
other tests. While the test itself is not exact, it allows usramsform our problem into a

simpler and smaller form. This test solves the very simplestjon: Ignoring the bounds,

is there an integral solution to a system of equations? Ifsifgtem of equations is in-

dependent then the original system of equations is alsgartient. If this test returns

dependence then the total system may be either dependewispeindent. For example

for i=1:10
a(i+11)=a(i);
end

Listing 3.5 Extended GCD Example

The initial dependence problem is to find integers syu¢tsuch thai +11=i" and
1<iif<11

The Extended GCD test tells us thati’) = (t1,t; + 11). Transforming the constraints to
be in terms of; gives us:

does there exist integérsuch that

1<t1<11

1<t;+11<11

This transformation is valuable for several reasons. JRingt number of variables are re-
duced. Second, number of constraints have been reducedeBei®transformation, each
lower and upper loop bound generated one constraint, wada dimension of the array
generated one equality constraint. The equality constedlie- b had to be converted into
two inequality constraintaX < b andax > b. Therefore, there weresd +2xd (where | is
the number of enclosing loops and d is the number of array miinas) constraints. Now
all the equality constraints are converted into boundstcaimés. Thus there are only«<2
constraints left[MHL91].

30

o o b~ WOWON BB

3.5. Dependence Analysis

3.5.2 SVPC: Single Variable Per Constraint Test

If the Extended GCD test returns dependence, then we appl{C3&4? on each constraint
comparing the upper and lower bounds. If after iterating edlehe constraints, the lower
bound(b) is greater than the upper bound for any variable, then the test returns “inde-
pendent”. Otherwise the system of equations is dependdms.tdst also applies to many
common multi-dimensional casesIHL91]. To demonstrate the algorithm, we cover the
following example in detail.

for i=1:10
for j=1:10
a(i,j) = a(i+10,j-9);
end
end

Listing 3.6 SVPC Example

The GCD test will set; = t1,i} = to,i2 = to +9 andi}, = t; — 10. Substituting the variables
t; andty into the above linear inequalities we get the following:

1<t <10
1<t,<10
1<t,+9<10
1<t1—-10<10

The first equation sets the lower boundtpfo 1 and the upper bound to 10. The second
constraint also does the same tar Thus combining the lower bounds from the last two
inequalities with the upper bounds from the first two, we aedu

10<t; <10

11<t,<10

31

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

Since the lower bound oty is greater than its upper bound, the system is independent.
This algorithm is very efficient. It require®(numconstraints+ numvars) steps with
many operations per steplHL91].

During this phase of analysis and transformation, MgF calculates dependencies be-
tween all the statements in the loop body against all theigiestlimportant ranges for that
loop using above mentioned dependence tests. It maintaresg data structures support-
ing dependence analysis. This information is used in sulesgdoop transformation phase.
The output of this phase is .xml file whose structure is showlristing 3.7. The main tag

of .xml file of Dependence Summary AD which containd.oopNotag having elements
LoopNumbemandNestingLevelTheLoopNotag contains sub-taggangehaving elements
Start End indicating the predicted lower bound and upper bound of dlop,| whether a
loop is parallelizable or not indicated by elemédiarallelizableand last elemen¥alid-
Transformationwhich indicates the type of loop transformation applicaisiethe loop. In
Listing 3.7there is only one sub-tagangefor loop 10 as there is only one range predicted
for this loop. The number of instances Rangetag is equivalent to the number of loop
bound ranges predicted for the loop. Within Rangetag, there is d oopStmtdag that
has elements calleiccesghat represents the actual loop statement for which depeede
information is calculated, and &tmtNumbersag, that indicates the statements between
which the dependence is calculated. Llisting 3.7, there are two statements within the
loop body, so there are fowoopStmtsags which indicate the dependency between read(r)
and write(w) of all statements in the loop body. Uisting 3.7 the value ofStmtNumbers
element is “S1:S1” which shows the dependence informatetwéen r - w of the same
statement which is S1. Similarly, the value of elem8tmtNumbersS1:S2” shows de-
pendence information between write of Statementl and ré&tatement 2. Likewise,
the value of elemenBtmtNumbersS1:S2” shows the dependence information between
write of Statementl and write of Statement 2. Dependencelement indicates whether
there is “dependence” or no “dependence” between the atetatements. In case of
loop number 2 which is a nested loop, a sub{tsgtedLoops added to th&kangetag to
represent the dependence information for the nested loop.

32

A WD

14
15

3.6. Loop Transformations

<AD>
<LoopNo LoopNumber="1.0" NestingLevel="0">
<Range Start="2" End="22" Parallelizable="Yes"
ValidTransformation="LoopReversal">
<LoopStmts Access="U(il, 1)=(sin(((pi * h) *= (i1 - 1)) + sin((((3
* pi) = h)y *= (i1 - 1))))" StmtNumbers="S1:S1" Dependence="n" />
<LoopStmts Access="U(i1, 1) = sin(pi * h* (i1-1))+sin(2 *pi *hx (i1-1));"
StmtNumbers="S1:S2" Dependence="n"/>
<LoopStmts Access="U(i1, 1) = V(i1,1)" StmtNumbers="S1:S 2"
Dependence="n"/>
<LoopStmts Access="V(il, 1) = sin(pi * h* (i1-1))+sin(2 *pi *hx (i1-1));"
StmtNumbers="S2:S2" Dependence="n"/>
</Range>
</LoopNo>
<LoopNo LoopNumber="2.0" NestingLevel="1">
<Range Start="2" End="23" Parallelizable="No"
ValidTransformation="Looplnterchange">
<NestedLoop Number="2.1">
<Range Start="2" End="22.0" Parallelizable="Yes">
<LoopStmts Access="Vb(i1) =((U((i1 - 1), (j1 - 1)) + U((iI1 + 1),
(41 - 1)) + (s2 * U(1, (1 - 1))))" StmtNumbers="S1:S1"
Dependence="n"/>
</Range>
</NestedLoop>
</Range>
</LoopNo>
</AD>

Listing 3.7 Format of Dependence Summary (.xml) File

3.6 Loop Transformations

In our framework programmers can either suggest the typan$tormation that they need
to apply through optional loop annotations, or it will auttcally determine and apply a

33

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

A W N P

transformation or a combination of transformations whicdlagal for a loop.

McFLAT implements the following loop transformations that haverbshown to be use-
ful for two important goals parallelism and efficient use oémory hierarchy I[WO04]:
loop interchangeandloop reversal For automatic detection and application of the above
mentioned loop transformations we use the unimodular toamstion model presented in
[WLI1].

3.6.1 Distance Vector

Currently, McRAT handles those loops whose dependences can be summarizést by d
tance vectors. Alependence distander a data dependence relation can be computed by
finding the vector difference between the iteration vectdrthe source and target itera-
tions. The dependence distance will itself be a vedi@alled thedistance vectqrdefined
asd=i" —iS

iS+d=i'

whereiS is the source iteration vector for the dependence relaitlois, the target iteration
vector.

Listing 3.8 shows an example of distance vector calculation. Are theration vectors il
and i2, suchthat ¥ i; <i, <4 andi; =i, —1?. The distance vectoris—i; =1

for i = 24
a(@i) = b(i) + c(i);
d@) = a(i-1);
end

Listing 3.8 Distance Vector Example

34

3.6. Loop Transformations

3.6.2 Loop Reversal

Loop reversal reverses the order in which values are assignthe index variable of a
loop. This subtle optimization can pave way for other optiions and can eliminate
dependencies. Our experimental res@tsgpter4, have shown that this transformation
can improve the performance of aAvLAB program, when applied tor loops that
execute over a fairly large upper bound.

Figure 3.3 shows a code snippet wittbop Reversahapplied on it. The original loop runs
from 1 to 10 whereakoop Reversateverses the order in which values are assigned to the
index variable, and the reversed loop runs down from 10 to 1.

fori=1:10 Loop Reversal fori=10:-1:1
end end

Figure 3.3 Example of Loop Reversal.

MCcFLAT, uses a unimodular transformations model for the apptioatif Loop Reversal

In the context of unimodular transformations frameworlqpdaeversal is represented by
an identity matrix. Reversal ofiloop is represented by the identity matrix, but with the
it" diagonal element equal tel rather than 1. For example, the matrix representing loop

=10
reversal of the outermost loop of a two-deep loop ne{t i% 1] .

3.6.3 Loop Interchange

Loop Interchangexchanges inner loops with outer loops. This transformatém improve
the locality of reference, depending on how arrays are dtbee column-major orderor
row-major orderin the programming language. This transformation is alsmkmasloop
permutation

Figure 3.4shows a code snippet wittbop Interchangapplied on it.

35

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

fori=1:10 |gopinterchange forji=1:5

forj=1.5 > fori=1:10
a(i,j) = a(i,j) +1; a(i,j) = a(i,j) +1;
end end
end end

Figure 3.4 Example of Loop Interchange.

A loop interchange transformation maps iteration (i,j)teration(j,i). In matrix notation,

.) 01 i j
we can write this a =
{1 0”!’] [']

The elementary transformation matrix thus performs the limberchange transformation
on the iteration space.

3.6.4 Legality of Unimodular Transformations

It has been proved that a loop transformation or a combinatitoop transformations ie-
gal if the transformed dependence vectors are all lexicogcatiipositive. MCREAT uses
the same legality test to determine whether a transformatica group of transformation
is valid for a loop or not\\VL91].

Theorem 1 : Let D be the set of distance vectors of a loop nest. A unimodular tras-
formation T is legal if and only if vdeD : Td > 0

Using the above theorefy we can evaluate if a compound transformation is legal tyrec
or not. Consider the following example:

for i=1:N
for j=1:N
a(ij) = a(ij) + a(i+1,-1);
end
end

36

3.7. McFLAT: As a Test-Bed for Loop Transformations Applioat

Listing 3.9 Legality Test Example

The dependence vector of above code snippetis (1, -1). Opeitberchange transforma-
01
tion, represented b 10] , isillegal, since the resulting dependence vedtdr, —1) =
(—1,1) is lexicographically negative. However, applying loopeirthange followed by re-
versal, represented by the transformation matrix
-1 0 01 0 -1
T/ = =
Sa)liel-li o
is legal since it leaves the resulting dependeigds—1) = (1,1) lexicographically posi-
tive.

3.7 MCcFLAT: As a T est-Bed for Loop Transformations
Application

Apart from automatically testing the legality of loop intbange and reversal or their com-
bination, our framework supports a larger set of transfdiona which can be specified by
the user. This allows us to use our system as a testbed forgmnogers with which they
can suggest different transformations and observe theteffelifferent transformations on
different loops. Programmers just have to annotate the lbooly with the type of transfor-
mation that they need to apply on the loopLlisting 3.10programmer asks the framework
to applyLoop Reversaby annotating the loop body as mentioned in line 2. Our frame-
work checks for the presence of annotations, if a loop aniootés present it computes
the dependence information using the predicted loop bofordtat loop and applies the
transformations if there is no dependency between the ltadpreents. The current set of
transformations supported by annotations is:

» Loop fission: This transformation attempts to break a lodp multiple loops over
the same index range. The fissioned loops will take only agdfdtie loop’s body.

37

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

This transformation can redu@ache missesas the most relevant data would be
present in the cache for the split loops.

Figure 3.5shows a code snippet wittoop Fissiorapplied on it. This transformation
breaks a loop into two loops, and each executing one stateshére previous loop
which had two statements.

fori=1:10 fori=1:10
a(i) = i+i; a(i) = i+i;
b(i) = *i; Loop Fission end
end .
fori=1:10
b(i) = i*i;
end

Figure 3.5 Example of Loop Fission.

» Loop fusion: A type of loop transformation that attemptséduce code size and
loop overhead by coalescing bodies of two loops into one. Wiveradjacent loops
iterate the same number of times, their bodies can be fusémhgsas there is no
dependency between the data items that these loops access.

Figure 3.6 shows a code snippet wittbop Fusionapplied on it. This transformation
fuses two loops which iterate the same number of times inédl@op.

* Loop interchange.

» Loop reversal.

for i1 = 2:(n-1),

(*LoopReversal; *)

uU(i1, 1) = sin(pi * hx (i1-1))+sin(3 *pi *hx (i1-1));
end;

Listing 3.10 A MATLAB loop with Annotated Loop Body

38

3.8. Output of MCEAT

fori=1:10
a()=i+i;
end fori=1:10
: - a(i) = i+i;
Loop Fusion b(i) = i*i;
fork=1:10 end
b(k)= k*k;
end

Figure 3.6 Example of Loop Fusion.

The above mentioned set of loop transformations are choseause they have proved
to improve the locality of reference and uncover paralmligspportunities[\W04]. The
framework is extensible and any loop transformation cami@emented and their effects
on different loop-bounds ranges can be studied.

McFLAT, is a useful tool that attempts to study the impact of difiérdeop transforma-
tions on different loop-bound ranges. This knowledge ipheffor the application of loop
transformations, as all legal transformations are not ydweeneficial for a loop. Our ul-
timate goal is to use the information provided by Mef in developing a self-learning
system that will select optimal loop transformations basedhe program features and
loop-bounds that have been beneficial in the past for a wamsition or a combination of
transformations.

3.8 Output of Mc FLAT

McFLAT is a source-to-source framework which uses the Mglfront-end and outputs
MATLAB code with loop-level specializations added for the imparfaedicted ranges for
that particular loopListing 3.11shows a code snippet from oGrnichbenchmarkListing

39

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

© 00 N O O B~ W N P

L i =
A w N B O

15

A WD

3.11shows a single loop with no loop transformation applied.

function U = crnich(a, b, ¢, n, m)

h = a/(n-1);

k = b/(m-1);

r = c2 +k/h"2;
sl = 2+42/r;

s2 = 2/r-2;

U = zeros(n, m);
tl=clock;

for i1 = 2:(n-1),
uU(@i1, 1) = sin(pi * hx (11-1))+sin(3 *pi * h* (i1-1));

end;

t2=clock;

fprintf(1, 'Time spent in loop: total = %f\n' , (t2-11) *[0 0 86400 3600
60 1]);

end

Listing 3.11 Original Code

Listing 3.12shows a code snippet from ti&nich benchmark, after it has passed through
McFLAT. In the Listing 3.12 the loop is guarded by a conditional check (line 9), that
tests during the execution of the program that the valueighdynamically assigned to
the upper bound variable is equivalent to an already important predicted value, tvhic
in the example is 220. If the condition is satisfied, then acsheed version with loop
transformation applied, which in this case.isop Reversais executed (lines 18 12). If

the condition is not met then original loop with no loop trEmmmation applied is executed
(lines 13— 16).

function [U] = crnich(a, b, ¢, n, m)
h=(@/({®n-1))
k= (b / (m-1)
r=1(«c" 2 * k) 1 (h ™ 2);

40

© 0 N o O

10
11

12
13
14
15

16
17
18
19
20

3.9. Parallelism Detection

sl 2+ @210r),
s2=(21/7rn - 2);
U = zeros(n, m);

t1 = clock;
if (n <220)
for i1 =((n-1) :-1:2)
U@, 1) = (sin(((pi * h) + (i1 - 1)) + sin((((3 * pi) * h) = (i1
- D))
end
el se
for il =2 : (- 1)
U@, 1) = (sin(((pi * h) + (il - 1)) + sin((((3 * pi) * h) = (i1
- D))
end
end
t2=clock;
fprintf(1, "Total Time spent = %f\n’' , (2 - t1) *[0 0 86400 3600 60 1] ;
end

Listing 3.12 Specialized Code

3.9 Parallelism Detection

Compiler-based auto-parallelization is an area which hihsast found wide-spread appli-
cation [TWFOQ09. This is due to the poor exploitation of application pagadim, which
results in performance levels far below those obtained wdrgginal code is parallelized
manually.

Recently, GPGPU and multi-core computing systems are wisksy as the most promis-
ing means of delivering performance with increasing trstesidensitiesfiof04]. However,
this potential cannot be realized unless the applicatioveitparallelized, and the parallel
constructs provided by the language takes advantage ofnitherdlying architecture effi-
ciently.

Unfortunately, efficient automatic parallelization of @jgential program is a daunting and

41

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

complex task which needs to be done judiciousiyFOO09. It is generally, agreed that
manual code parallelization by expert programmers givétebperformance and more
streamlined parallel implementation, but at the same tlmeeapproach is most costly and
time-consuming. Parallelizing compiler technology, oe thther hand, can greatly reduce
cost and time-to-market while ensuring semantic corresstioé the resulting parallel code.

Automatic parallelism detection is a much studied researela [am74. Progress was
achieved in early 1980s and 1990s on restriddALL and DOACROSSoops BC04,
LL97]. In fact, this research has resulted in a whole range oflleéizang compilers, e.g.
Polaris PEH"93], SUIF [HAA *96] and Open64A4L].

MATLAB is a popular programming language for numerical applicatid&ecently, compil-
ers have been designed forAaVLAB that attempt to improve its speed of execution and aim
at exploiting parallelism opportunities either automallic or interactively AP01, CB98§,
CB0g.

3.9.1 Types of Dependency

Parallel computing is a form of computation that lets you eeesal calculations simulta-
neously, operating on the principle that large problemsaféan be divided into smaller
tasks, which are then handled concurrently (“in parallgf9r9Q. There are several differ-
ent forms of parallel computindpit-level instruction-level data, andtask parallelism

Parallel computer programs are more difficult to write thequeential ones{H09, because
data dependencies in the programs introduce several negeslaf potential software bugs.
Communication and synchronization between the differerallemtasks are typically one
of the greatest obstacles to getting good parallel prograhish give better performance
as compared to their sequential counterparts.

Understanding data dependencies is fundamental in agplgiop transformations and
writing parallel programs. There are four types of data depacies.

* Flow Dependence: Also known as true dependence, statemestedes statement
andi computes a value thauses. IrListing 3.13there is a flow dependence or true

42

3.9. Parallelism Detection

dependence represented as;23. The dependence flows between instances of the
statements in different iterations. This is a loop-cardedendence. The dependence

distance is 1.
1 for i =24
2 ali] = b[i] + c[i];
3 d[i] = a[i-1];
4 end

Listing 3.13 Flow Dependency Example

» Anti Dependence: Statement i precedes j, and i uses a Vallg tomputes. In
Listing 3.14there is an anti-dependence;® 2. This is a loop-carried dependence.
The dependence distance is 1.

1 for i =24

2 afi] = b[i] + cli;
3 d[i] = a[i+1];

4 end

Listing 3.14 Anti Dependency Example

* Input Dependence: Statement i precedes j, and i uses a trat¢ also uses. In
Listing 3.15there is an input dependence between statements 3 and 4&ddnot

314,
1 x =1
2y =X + 2
3 X =2Z-WwW,
4 x =y z

Listing 3.15 Input Dependency Example

43

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

» Output Dependence: Statement i precedes j, and i compwts@that j also com-
putes. InListing 3.16 there is an output dependency between statements refgesen
as 1—°3 and 3-°4.

I
=

X + 2;

Z - W,
y !z

X X < X
1

A W N P

Listing 3.16 Output Dependency Example

We refer to these dependency types inExperimental Resultshapter, where we list the
type of dependencies present between loop statements beoohmarks. McEAT tests
for the presence of flow dependency to determine whether@daa be converted to a
parfor loop or not.

McFLAT, which is the topic of this thesis is a source-to-source &aonrk which uses
McLAB front-end and outputs MrLAB code with loop-level specializations and automat-
ically detects whether a loop can be converted fmagor loop or not. The framework
performs a parallelization test on the loops based on therdkgnce information calcu-
lated in the dependence analysis and instrumentation phsseg 3.17 shows the syntax
of the parallel for-loop represented by the keywgafor in MATLAB. parfor has the
same syntax for the range expression as the sequéttialop except the keyworparfor

is used instead dbr as shown on line number 1.

parfor il = 2:(n-1),
U(i1, 1) = sin(pi * h* (i1-1))+sin(3 *pi * h* (i1-1));
end;

Listing 3.17 Syntax of Par-for loop in MATLAB

A loop is classified as a parallel loop in MckT, according to MTLAB’S semantics
[Matd], since the generated code is targeted foxTMAB system. Thus, a loop is clas-

44

3.9. Parallelism Detection

sified as a parallel for-loop if it satisfies the following ditons.

» There should be no flow dependency between the same arragsastthin the loop

~N o o B~ W N P

body. i.e. Distance vectors for all the same array acce$srgddshbe zero, e.gfor
loop shown irListing 3.18is not parallelizable due to the way variablis used. This
loop doesn't satisfy the flow dependency requirement aff MAB’s parfor loop.

for ii = 2:in

for jj = 2:m,

f(ii, jj) = f(i, jj)+maskqi, jj) * L
(0.25 = (f(ii-1, j)+fi+1, j)+f(ii, j-1)+ ...

f(ii, ji+1))-(i, ji);

end;

end

Listing 3.18 Example of Non-Parallelizable for Loop

Thefor loop shown inListing 3.19 satisfies the constraint of flow dependency for
MATLAB’s parfor loop.

for ii = 1:n,
q = q+(f(|l, m)+f(||+1, m)) *0.5;
end;

Listing 3.19 Example of Parallelizable for Loop

» Within the list of indices for the variable, exactly one exdnvolves the loop variable

Other variables used with loop index variable to index aayashould remain con-
stant over the entire execution of the loop.

The loop variable should not be modified in the body of thglobhis restriction is
required, because changing loop variable in the parfor lnoditidates the assump-
tions MATLAB makes about communication between the client and workeng T

45

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

A WD

A W N P

for loop shown inListing 3.20attempts to modify the value of the loop variable i in
the body of the loop, and thus is invalid:

parfor i = 1:n
=i+ 1
a@) = i

end

Listing 3.20 Example of Invalid parfor Loop

The loop index variables must have consecutive increastegers.
parfor loopvar = initval:endval, statements, end

allows you to write loops for a statement or block of code thagcutes in parallel on
a cluster of workers, which are identified and reserved vagratlabpool command.
initval and endval must evaluate to finite integer valuesherange must evaluate to
a value that can be obtained by such an expression, thatascanding row vector of
consecutive integers. Thoarfor loop shown inListing 3.21fails the parfor range
check.

parfor i = n:-1:1
a@) = i

end

Listing 3.21 Example of Invalid parfor Loop

3.10 Limitations of Mc FLAT

At present, our framework implements a limited set of logm&formations. It only handles
perfectly nested loops which have affine accesses and wiepemdences can be summa-
rized by distance vectors. As we develop the framework weaadl further dependence

46

3.10. Limitations of MCEAT

tests and transformations, as well as transformationsdablemmore parallelization. How-
ever, since we also wish to put this framework into our JIT piden, we must be careful
not to include overly expensive analyses.

47

MCcFLAT: A Framework for Loop Analysis and Transformatiors MATLAB

48

Chapter 4

Experimental Results

In this chapter we demonstrate the use of MeF through two exploratory performance
studies on a set of MrLAB benchmarks. We begin with a description of our benchmarks,
their source, benchmark size, the versions of software msgelformance measurements.
We then present the types of dependence each loop carrieis et statements and the
number of statements within the loop body. This is followgdabcomparison of perfor-
mance numbers and speedups on Mathworks MATLAB, our McVM, IMlcand GNU
Octave of transformed programs, applying our dependesterseand standard loop trans-
formations for a variety of input ranges. The second stuadkdoat the performance of
benchmarks when we introduparfor constructs on transformed loops and original loops.
We then examine the factors that explain the performanceostsron different execution
engines.

Our ultimate goal is to integrate McBT with a self-learning system that decides an opti-
mal transformation for a loop based on its features, loopakds and system’s past experi-
ence. However these example studies provide some integegdita and insight into how
different loop-bound ranges, loop features impact varloap transformations. These ex-
ploratory studies provide an evidence that always applyog transformations is not ben-
eficial. At times loop transformations give no performangeexdups and at times degrades
the performance of the program.

49

Experimental Results

4.1 Benchmarks and Static Information

Table4.1summarizes our collection of 10 benchmarks, taken from thed¥ and Univer-
sity of Stuttgart benchmark suites. These benchmarks hevedast size, but yet perform
interesting calculations and demonstrate some integebhaviors. For each benchmark
we give the name, description, source of the benchmaddble 4.2 lists the number of
functions, number of loop nests and number of loops that eaaubomatically converted
to parallel for loops.

We have chosen our benchmarks such that we can study theaffeop transformations
on the execution time of a program where loop body is reptatiee of different features.
In some of our benchmark loops computation is done on the sarag within the loop
body. Whereas for others there are no array dependenciesaWelso included a bench-
mark in our suite which has loop that invokes a function aniesrits return value to an
array.

In Table4.3, we report on the type of dependences that we observed itbistatements

in the loop body. The column label&kp Typandicates the type of dependences that exist
within the loop body. In our benchmark suite the maximum nends loops that we have

is five. The columnd.oopl, Loop2 Loop3 Loop4indicate the number of statements in
the loop body, for example, our benchmakni has four loops and the columh®opl,
Loop2 Loop3 Loop4indicate the number of statements in the loop body of eagh ilwo
Crni benchmark.

4.2 Performance Study for Standard Loop Transforma-
tions
For our initial study, we ran the benchmarks on an AMD AthloeZ*X2 Dual Core Pro-

cessor 3800+, 4GB RAM computer running the Linux operatingtesy; GNU Octave,
version 3.2.4; MTLAB, version 7.9.0.529 (R2009b) and McVM/McJIT, version 0.5.

50

4.2. Performance Study for Standard Loop Transformations

Benchmark|| Source of Benchmark
Name Benchmark || Description
Crni McLab Finds the
Benchmarks| Crank-Nicholson Sol.
Mbrt McLab Generates the mandelbrot set.
Benchmarks
Fiff McLab Finds the finite-difference solution
Benchmarks| to the wave equation.
Hnormal McLab Normalises array of
Benchmarks| homogeneous coordinates.
Nbld McLab Simulates the gravitational
Benchmarks| movement of a set of objects.
Interpol Uni of Stutt || Compares the stability
and complexity of Lagrange interpolatiof.
Lagrcheb | Uni of Stutt || Computes Lagrangian and Chebyshev
polynomial for comparison.
Fourier Uni of Stutt || Compute the Fourier transform
with the trapezoidal integration rule.
Linear Uni of Stutt || Computes the linear iterator.
EigenValue| Uni of Stutt || Computes the eigenvalues
of the transition matrix.

Table 4.1 Description and Source of Benchmarks

For each benchmark we ran a number of training runs througmgtrumenter and profiler
and then we used our range estimator to predict ranges fprofiee data. The Dependence
analyzer and loop transformer use these ranges to genesateofoutput files, one out-
put file for each combination of possible transformations: €&xample, if the file had two
loops, and loop reversal could be applied to both loops, twewould produce four differ-
ent output files corresponding to: (1) no reversals, (2)nsrg only loop 1, (3) reversing
only loop 2, and (4) reversing both loops.

Each output file has a specialized section for each prediotpdrtant range, plus a dy-
namic guard around each specialized section to ensurehhabtrect version is run for a
given input.

51

Experimental Results

| Benchmark Name # Lines Code| # Funcs| # Loops| # Par Loops||

Crni 65 2 4 1
Mbrt 26 2 1 0
Fiff 40 1 2 0
Hnormal 30 1 1 1
Nbld 73 1 1 0
Interpol 187 5 5 0
Lagrcheb 70 1 2 2
Fourier 81 3 3 2
Linear 56 1 2 1
EigenValue 50 2 1 0

Table 4.2 Characteristics of Benchmarks

We report the results for four different MILAB execution engines, the Mathworks’Av-
LAB (which contains a JIT)Table4.4), the GNU Octave interpretefdble4.5), the McVM
interpreterfable4.7), and the McVM JIT(McJIT) Table4.6). Execution time of bench-
marks were averaged on three runs for all the four executigimes.

In each table, the column label@dans. Appliedndicates which transformations are ap-
plied to the loops in the benchmark, whédendicates that no transformation is applied,
Rindicates Loop Reversal is appligd,represents Loop fusion arnds representative of
Loop InterchangeNN indicates that there are two loops in the benchmark and nefoa
mation is applied on any of them. Similarlg shows there are two loops, Interchange is
applied on the first loop and reversal on the second ld6R. indicates one loop nest on
which interchange is applied and then reversal.

52

4.2. Performance Study for Standard Loop Transformations

Benchmark # Stmts in Loop Body
Name Loopl | Dep Type| Loop2 | Dep Type| Loop3 | Dep Type| Loop4 | Dep Type
Crni 1 Nil 3 Nil 3 anti 1 anti
flow
Mbrt 1 Nil
Fiff 2 Nil 1 anti
flow
Hnormal 1 Nil
Nbld 18 output
input
Interpol 5 Nil 2 anti 2 anti 1 Nil
Lagrcheb 1 Nil 1 Nil
Fourier 1 Nil 1 Nil 1 Nil
Linear 1 flow 1 Nil
EigenValue| 1 Nil

Table 4.3 Characteristics of Loops in Benchmarks

Depending on the benchmark we had two or three differentasitizat were identified by
the range predictor. The ranges appear in the tables inasicig value, s®red. Range 1
corresponds to the smallest range &mdd Range ®orresponds to the largest range. We
chose one input for each identified range and timed it for é&@mghtransformation version.
In each table we give the speedup (positive) or slowdowndineg) achieved as compared
to the version with no transformations. We indicate in bdle version that gave the best
performance for each range.

Let us consider first the execution time for MathworksaMAB, as given inTable4.4.
Somewhat surprisingly to us, it turns out that loop reveasahe always gives performance
speed-up on the higher ranges. Whereas, on lower rangesishatker no speed up or
performance de-gradation in some of the benchmarks. Tipiamthat it may be worth
having a specialized version of the loops, with importamipk® reversed for larger data
ranges.

However, reversing one of the two loops having the same tmand operating on the

53

Experimental Results

Benchmark|| Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied || Time | % Speedup| Time | % Speedup| Time | % Speedup
Crni N 60ms 3.41s
R 60ms | 0.0 % 3.21s | 5.8%
Mbrt N 1.91s 9.40s
I 1.98s | -3.6% 9.55s | -1.6%
R 1.91s | 0.0% 9.25s | 1.%%
(I+R) 1.97s | -3.4% 9.32s | 0.8%
Fiff NN 400ms 880ms
RN 405ms| -1.25% 830ms| 5.6%
Hnormal N 1.85s 4.52s
R 1.84s | 0.5% 4.48s | 0.8%
Nbld N 40ms 2.53s
Interpol N 44.70s 60.35s
Lagrcheb || NN 140ms 280ms 450ms
RR 138ms| 1.4% 270ms| 3.5% 420ms| 6.6%
RN 143ms| -2.1% 280ms| 0.0% 450ms| 0.0%
NR 143ms| -2.1% 280ms| 0.0% 430ms| 4.4%
Fourier NNN 50ms 1.31s
FN 40ms | 20.0% 1.49s | -13.7%
RRN 50ms | 0.0% 1.25s | 4.5%
(F+R)N || 60ms | -20.0% 1.31s | 0.0%
RNN 50ms | 0.0% 1.21s | 7.6%
NRN 50ms | 0.0% 1.25s | 4.5%
Linear NN 336ms 640ms 2.60s
IN 566ms| -68.4% 890ms| -39.0% 3.67s | -38.4%
IR 610ms| -81.5% 850ms| -32.8% 3.42s | -31.5%
EigenValue|| N 80ms 310ms 1.10s
I 100ms| -25.0% 370ms| -19.3% 1.18s | -7.27%
R 90ms | -12.5% 290ms| 6.4% 1.10s | 0.0%
(I+R) 90ms | -12.5% 280ms| 9.6% 1.08s | 1.81%

Table 4.4 Mathworks’ MATLAB Execution Times and Speedups

54

4.2. Performance Study for Standard Loop Transformations

Benchmark| Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied || Time | % Speedup| Time | % Speedup| Time | % Speedup
Crni N 5.46s 1102s
R 5.46s | 0% 1101s| 0.0%9%
Mbrt N 289.8s 2000s
I 300s | -3.5% 2000s| 0%
R 289.85| 0% 2000s| 0%
(I+R) 300s | -3.5% 2000s| 0%
Fiff NN 6.44s 251s
RN 6.41s | 0.46% 253s | -0.7%
Hnormal N 7.34s 13.4s
R 7.48s | -1.9% 13.6s | -1.4%
Nbld N 2.56s 7.89s
Interpol N 3524s 5238s
Lagrcheb || NN 630ms 1.28s 1.95s
RR 630ms| 0% 1.27s | 0.7 1.94s | 0.51%
RN 630ms| 0% 1.27s | 0.7% 1.94s | 0.51%
NR 630ms| 0% 1.27s | 0.7% 1.94s | 0.51%
Fourier NNN 120ms 4.24s
FFN 120ms| 0% 4.28s | -0.9%
RRN 120ms| 0% 4.31s | -1.6%
FRN 120ms| 0% 4.19s | 1.1%
RNN 110ms| 8.3% 4.26s | -0.4%
NRN 120ms| 0% 4.25s | -0.2%
Linear NN 6.58s 352s 1496s
IN 6.65s | -1.0% 381s | -8.2% 1443s| 3.5%
IR 6.65s | -1.0% 382s | -8.5% 1422s| 4.9%
NR 6.56s | 0.3% 369s | -4.8% 1389s| 7.1%
EigenValue|| N 240ms 106s 460s
I 230ms| 4.1% 127s | -19.8% 502s | -9.1%
R 230ms| 4.1% 116s | -9.4% 486s | -5.6%
(I+R) 230ms| 4.1% 126s | -18.8% 507s | -10.2%

Table 4.5 Octave Execution Times and Speedups

55

Experimental Results

McVm(JIT)

Benchmark| Trans Pred. Range 1 Pred. Range 2
Name Applied || Time | % Speedup| Time | % Speedup
Crni N 4.00s 1074s

R 4.00s | 0.0% 820s | 23.6%
Mbrt N 98.37s 675s

I 101s | -3.3% 714s | -5.8%

R 110s | -12.6 % 781s | -15.6%

(I+R) 106s | -8.16% 738s | -9.35%
Fiff NN 260ms 500ms

RN 260ms| -1.95% 460ms| 8%
Hnormal N 5.00s 8.93s

R 4.96s | 0.8% 8.05s | 10.%%
Nbid N 850ms 4.10s

Table 4.6 McVM(JIT) Execution Times and Speedups

McVM(Interpreter)

Benchmark| Trans Pred. Range 1 Pred. Range 2
Name Applied || Time | % Speedup| Time | % Speedup
Crni N 7.12s 1386.2s

R 6.35s| 10.8% 1341.5s| 3.2%
Mbrt N 384s 2491s

I 344s | 10.4 % 2286s | 8.2%

R 342s | 10.9% 2370s | 4.8%

(+R) 346s | 9.8% 2375s | 4.6%
Fiff NN 7.38s 7.46s

RN 6.95s| 5.8% 7.25s | 2.8%
Hnormal N 7.23s 11.6s

R 7.11s| 1.6% 12.24s | -5.5%
Nbld N 1.41s 4.24s

Table 4.7 McVM(Interpreter) Execution Times and Speedups

56

© 0 N o 0o b~ W

10 a

11
12
13
14

4.2. Performance Study for Standard Loop Transformations

same data item results in performance degradation at lavges, but has no impact as
the bounds increase, for example, Lagrcheb, this is peneapssing one of the two loops
results in more cache misses. Uisting 4.1 benchmark, vector operations are performed
within the loop body. A vector in MTLAB is defined as an array which has only one
dimension with a size greater than one. For example, thg tra,3] counts as a vector.
The following four vectors are worked on.

* lag

* X

x_plot

y_plot

for each value of j, it computes the differen@d) between the elementplot(j) andlag;
similarly, it computes the differendel2) between the elementi andlag. It then computes
an element-wise division by dividin@1) with the (d2) to obtain a vector. The product of
this vector is then assigned to the elememiot(j).

function lebesgue = lagrcheb(n, i,scale)

lebesgue = O;

n = fix(n);

i = fix(i);

if(n < 2), error('n<1'); end

if(i < 1] i>n), error(i<lori>n); end

57

Experimental Results

x = linspace(a,b,n);

x_plot = linspace(a,b,m *N);
length(x_plot);

y_plot = zeros(1, length(x_plot));
lag = x([1:i-1 i+1:n));

tl=clock;

for time=1:scale

for j=l:length(x_plot);

y_plot(j) = prod((x_plot(j)-lag)./(x(i)-lag));
end

X = cos((2 *[n-1:-1:0]+1)./ (2 *(n-1) + 2) * pi);
lag = x([L:i-1 i+1:n]);

for j=1l:length(x_plot);

y_plot(j) = prod((x_plot(j)-lag)./(x(i)-1ag));
end

end
t2=clock;
fprintf(1, 'total = %f\n’ , (t2-t1) *[0 0 86400 3600 60 1] ";

Listing 4.1 Lagrcheb Benchmark

MATLAB accesses arrays in column-major order, andrbM\B programmers normally
write their loops in that fashion, so always applying loofeishange degrades the perfor-
mance of the program. Performance degrades more for looh wivolve array depen-
dencies. However, the degradation impact is lower at higgneges perhaps due to cache
misses in both the cases, that is transformed and origiopl [Bhe loop interchange degra-
dation impact is less for loops that invoke a function whoskie is written to an array,
for example, Mbrt. InListing 4.2, the loop on lines from 16 14 is a candidate for loop
interchange transformation. Within the loop body, a fumtthamedterationis called and
its return value is written to an array namset

58

4.2. Performance Study for Standard Loop Transformations

functi on set =mandelbrot(N, Nmax)
side = round(sqrt(N));
ya = -1
yb = 1,
xa = -1.5;
xb = .5;
dx = (xb-xa)/(side-1);
dy = (yb-ya)/(side-1);
set = zeros(side,side);
for x=0:side-1
for y=0:side-1
set (y+1,x+1) = iterations(xa+x
end
end
end

function out = iterations(x,max)
C = X
i = 0;
whi | e(abs(x) < 2 & i < max)
X = X*X + C;
i = i+l
end
out = i
end

*dx+i * (ya+y *dy),Nmax);

Listing 4.2 Mbrt Benchmark

Loop fusion was only applied once (in Fourier) where it giagserformance speed-up on
lower ranges. However, as the loop bounds and accessedjatriaigger then performance
degrades.

Now consider the execution time for Octave, givefiable4.5. Octave is a pure interpreter
and you will note that the absolute execution times are aitearder of magnitude slower
than Mathworks’ system, which has a JIT accelerator. Thdiegppransformations also
seem to have very little impact on performance, particylan the lower ranges. For

59

Experimental Results

higher ranges, no fixed behavior is observed, for some beadtsthere is a performance
improvement whereas for others performance degrades.

We were also interested in how the transformations wouldachpur group’s McVM, both

in pure interpreter mode, and with the JIT. We couldn’t rrtted benchmarks on McVM
because the benchmarks use some library functions whichareurrently supported.
However,Table4.6 and Table 4.7 lists the results on the subset of benchmarks currently
supported. Once again loop reversal can make a significgratdhon the larger ranges for
the JIT, and actually also seems beneficial for the McVM(peter).

4.3 Performance study for Parallel For Loops

In Table4.8we report the execution time and speedups withTMAB’s parfor looping
construct. We ran the benchmarks on an Intel ™Core(TM) i7 égsar (4 cores), 5.8GB
RAM computer running a Linux operating systemaM.AB, version 7.9.0.529 (R2009b).
For these experiments we initialized theaM.AB worker pool to size 4.

The term pN indicates that there is one loop in the benchmveich is parallelized and
no loop transformation is applied on it. (pF) means two loa@sfused and then the fused
loop is parallelized. Note that it is not possible to combowp reversal and parallelization
with the MATLAB parfor construct as the MrLAB specifications require that the loop
index expression must increase.

We have reported execution times of various combinatiopaddllel and sequential loops,
to study the effect of parallelizing a loop in the context oAfMlAB programming language.

For most of the benchmarks we observed tharMAB's parfor loop does not often give
significant performance benefits, and in some cases cawsze performance degradation.
This is likely due to the parallel execution model suppoitgdVIATLAB which requires
significant data copying to and from worker threads thatsivadows the gain achieved by
executing the tasks in parallel.

MATLAB’s parfor loop has its advantages and disadvantages, so automatioallerting

60

4.3. Performance study for Parallel For Loops

Benchmark|| Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time | % Speedup| Time | % Speedup| Time | % Speedup
Crni N 280ms 13.41s
pN 1.03s | -257% 14.20s| -5.9%
R 290ms| -3.5% 13.30s| 0.8%
Hnormal N 800ms 1.70s
pN 70.5s | -8712 % 71.3s | -4094%
R 780ms| 2.5% 1.68s | 1.1%
Lagrcheb || NN 120ms 200ms 280ms
(PN)(pN) 140ms| -16.6% 180ms| 10.0% 250ms| 10.7%6
N(pN) 110ms| 8.3% 180ms| 10.0% 250ms| 10.7%
(PN)N 120ms| 0.0% 180ms| 10.0% 260ms| 7.1%
R(pN) 120ms| 0.0% 180ms| 10.0% 250ms| 10.7%
(PN)R 120ms| 0.0% 180ms| 10.0% 250ms| 10.7%
RR 120ms| 0.0% 200ms| 0.0% 270ms| 3.5%
RN 130ms| -8.3% 200ms| 0.0% 270ms| 3.5%
NR 130ms| -8.3% 200ms| 0.0% 270ms| 3.5%
Fourier NNN 170ms 680ms
(PN)NN 50ms | 70% 720ms| -5.8%
(PN)(pN)N || 200ms| -17.6% 720ms| -5.8%
N(pN)N 50ms | 70% 720s | -5.8%
(pF)N 50ms | 70% 720ms| -5.8%
R(pN)N 50ms | 70% 710ms| -4.4%
(PN)RN 50ms | 70% 680ms| 0.0%
FN 20ms | 88.20 690ms| -1.4%
RRN 170ms| 0.0% 680ms| 0.0%
(F+R)N 170ms| 0.0% 680ms| 0.0%
RNN 170ms| 0.0% 680ms| 0.0%
NRN 170ms| 0.0% 680ms| 0.0%
Linear NN 150ms 7.40s 29.8s
N(pN) 150ms| 0.0% 7.20s | 2.™0 30.2s | -1.3%
I(pN) 390ms| 0.0% 10.30s| -39.1% 40.2s | -34.8%
IN 370ms| -146.6% 10.30s| -39.1% 37.6s | -26.1%
IR 370ms| -146.6% 10.30s| -39.1% 37.6s | -26.1%
NR 160ms| -6.6% 7.20s | 2.7% 29.4s | 1.3%%

Table 4.8 Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops

61

Experimental Results

a sequential loop into parfor loop would not always be beneficial.

62

Chapter 5
Related Work

In this chapter, we discuss various compilers that have Hesigned to compile dynamic
languages like MTLAB, to compile either ahead of time or just-in-time to avoid tiver-
head of interpreting. Then we discuss various dependestirgalgorithms that are being
used to compute dependence between same array references.wé talk about vari-
ous approaches that have been used previously to deterpiingabloop transformations
based on their impact on the program. Me¥, introduces loop-level specializations for
important predicted ranges inMLAB programs, so we talk about program specialization
techniques used previously for different languages to gaifiormance speedups. Then
we discuss previous approaches used to detect automapeadllelization opportunities
in programs. The last section discusses techniques usetiémtive compilation in the
context of different programming languages.

Previous compilers have tried to gain performance speeolypsnslating MTLAB code

to other static languages, such asJB(7 or Fortran 90 RGG"96, DRP94. This ap-
proach allows other optimizations and parallelizatiort ttiean be done on static languages,
as more information is available about the translated @mogiLately, code restructuring is
performed for MATLAB programs to take advantage of language optimized opesagign
Vectorization of loopsBLAO7].

Falcon RGG"96]: A MATLAB Interactive Restructuring Compiler, provides a program-

63

Related Work

ming environment that uses an existing high-level arragl@age MATLAB as a source
language and generates Fortran 90 programs with diredtivggarallelism. Falcon per-
forms static, dynamic and interactive analysis to genetfaeoutput code. It includes
capabilities for interactive and automatic transformasgiat both the operational-level and
the functional-level which results in better performance.

Menhir: An environment for high-performanceAviLAB [CB99 . Itis a compiler for gen-
erating sequential or parallel code from the&MAB language. The compiler is designed
such that it takes MTLAB as a specification language and generates parallel andgedue
C or Fortran code.

McLAB, [mcl] an endeavor of Sable lab at McGill University aims to prevlidnguages,
compilers and virtual machine for dynamic scientific langesm Starting with the MAT-
LAB language, and extensions of the MATLAB language suchgseat MatlabTAH10].
McLAB also has a compiler for generating Fortran 95 code calleddvi@E09]. The
McLAB virtual machine (McVM) currently integrates an interpreésd an optimizing
JIT compiler(McJIT) supporting a non-trivial subset of tReATLAB programming lan-
guage. McEAT, the topic of this thesis is part of analysis and transforomaéngine of
McLAB having a dependence analyzer, a basic parallelizatiortitaienechanism and a
loop transformer component. McET, uses profile-based training runs to collect informa-
tion about loop bounds and ranges, and then applies a ratigets to estimate which
ranges are most important. Specialized versions of theslaop then generated for each
predicated range. Our ultimate goal is to embed this framlewoour McJIT system,
where it will work as an adaption system invoking the comptiterecompile a method for
performance speedups based on what it has seen in the past.

5.1 Efficient And Exact Dependence Analysis
There is a rich body of research on the topics of dependeralgsas, loop transformations

and parallelization. In our related work, we attempt to ca/eepresentative subset that, to
the best of our knowledge, covers the prior work in the arghisfthesis.

64

5.1. Efficient And Exact Dependence Analysis

Data dependence testing is the first step in detecting logg parallelism in numerical
computation. “The problem is equivalent to integer lineasgpamming and thus in gen-
eral cannot be solved efficientlyHL91]. The most efficient known dependence testing
algorithms either depend on the value of the loop bounds @oeterO(n°™) where n

is the number of loop variable&fn87 Len83 Sch8§. Many algorithms have been pro-
posed for this (dependence testing) problem, each ondisglédferent tradeoffs between
accuracy and efficiency. Traditional algorithms attempirwve independence, but in case
of failure they assume dependenée<B7, Ban88 Wal88 Wol9(]. If such an algorithm
returns dependent, we are not sure if an approximation wake miathe set of constraints
are actually dependent.

Some work has been done on algorithms which are guarantdsdeact for special case
inputs [Sho8]. However, MHL91] uses a series of special case exact tests. If the input is
not of the appropriate form for an algorithm, then they try tither next one. Using a series
of tests allows them to be exact for a wider range of inputsc&#ag exact tests can also
be much more efficient than cascading inexact ones. By atiegnfite most applicable
and least expensive test first, in most cases they return @ittkefianswer using just one
exact test. MCEAT, uses the same approach ashiiH{L91], we have implemented a set of
dependence tests, which we have tested on our benchmagkaswitfound the algorithms
efficient and exact for our input set.

Several other well-known dependence tests are

* |ITest [PP94 is an optimized test which combines the GCD and the Banergs.te
Whenever either of the GCD test or the Banerjee test producee’aafswer, the
ITest gives the same answer. In a number of cases where the GCDaBanerjee
tests produce a “maybe” answer the | test, produces a no. dii@dit is able to
produce a definite “yes” answer when the GCD and Banerjee testisige only a
“maybe”.

» Fourier—Motzkin Test solves the general non-integer linear programming case ex
actly. If the result of this test is independent, the integgse is also independent
[DE73. In case this test returns dependent, it also returns alsasojution. If this

65

Related Work

sample solution is integral, then the integral case is dégan Otherwise, this test is
not exact.

* Omega Testis based on Fourier-Motzkin variable elimination to irgegrogram-
ming. However, the Omega test is more promising as compargdurier-Motzkin
test as it, combines new methods for eliminating equalityst@ints with an exten-
sion of Fourier-Motzkin variable elimination to integerogramming Pug9]1. The
Omega test determines whether there is an integer solatiamptoblem which in its
case is a set of linear equalities and inequalities. Thetitgpiine Omega test is a set
of linear equalities and inequalities.

5.2 Loop Transformations

Several techniques are used to decide the order of loogfdramstions. A technique com-
monly used in parallelizing compilers is to decidepriori the order in which the com-
piler should attempt to apply transformations. This tegheiis inadequate and inefficient
because the choice and ordering of loop optimizations agelyhidependent on program
semantics, and the optimality of a transform cannot be atetllocally, one step at a time
[WL9I1].

Another used technique is to “generate and test”, that exlh@ustively explore all different
possible combinations of transformations. This “geneaae test” approach is expensive
and also cannot search the entire space of transformatandhave potentially infinite
instantiations. Another disadvantage of this approachas differently transformed ver-
sions of the same program may trivially have the same behawid need not be explored
[WL9I1].

Linear transformations are widely used to vectorize andlf@ize loops. A smaller set of
these transformations are unimodular transformationamUdular loop transformations
have been widely used since they reduce the problem of aygpiynid testing the legality of
loop transformations to matrix operations, thereby, allhgythe application of many useful
loop transformations efficientlif.VG95).

66

5.3. Impact of Loop Transformations

Loop interchange, reversal and skewing transformatioasrerdeled as unimodular trans-
formations in the iteration spacg&lj185, Qui84, DS9Q WL91]. A compound transforma-
tion is just another linear transformation, being a proddisieveral elementary transforma-
tions. This model provides a general legality test for alsinga compound transformation,
as opposed to a specific legality test for an individual elaiamy transformations. The loop
transformer component of our McET framework also uses a unimodular transformations
model to apply and test the legality of a loop transformatiora combination of loop
transformations, but our intent is to specialize for difetrpredicted loop bounds.

5.3 Impact of Loop Transformations

Optimizations are applied at various levels to gain pertoroe speedups.

High-order transformations are optimizations that speiiff improve the performance of
loops through techniques such as loop interchange, looprfuand loop unrolling. The
goals of these loop optimizations include reducing thescostmemory access through the
effective use of caches, overlapping computation and mgeamaress through effective uti-
lization of the data prefetching capabilities provided by hardware. Improperly selected
high-order transformations can degrade the performanae &xtent worst than the same
unoptimized codegar9]. Hence, automatic selection of high-order transfornregibas
to be done judiciously to get the desired benefit.

Pre-processors have been designed that apply varioutanaagions on the source code or
intermediate representation of the source code, which wbempiled by the native com-

piler generates better and optimized code. Kuck and AsscRre-processor (KAP) is

an optimizing pre-processor that applies various transétions on the source code (e.g.
temporary variables induction). This pre-processor iswegiral part of HP’s Fortran com-

piling systems, and if used with proper pre-processingctives have given a performance
improvement on computationally intensive tasks. VASTpaispre-processor, operates
through a compiler driver on either intermediate represt@nts of the program (such as
Edison Design Group IR) or directly on source code to perfoighdevel optimizations,

67

Related Work

which includes loop nest optimizations and automatic vezation and parallelization.

Optimizing compilers use either profiled information ofyiceis runs or compiler analysis
to estimate the execution time cost, memory cost, semauitinsderlying architecture and
execution frequencies. Individual program transformeiare used in different ways to
satisfy different optimization goals. Quantitative madbhsed on memory cost analysis
have also been used to select optimal loop transformatMamory cost analysis chooses
a beneficial transformation based on the number of distiache lines and the number of
distinct pages accessed by the iterations of a |6 J1.

Locality optimization in the SUIF (Stanford University grtmediate Format) 1.x compiler
performs unimodular + tiling transformations. Selectidrunimodular transformation is
based on identifying reusability of vector spac@/[04]. Schreiber and Dongarra addressed
problem of selecting optimal tile sizes to minimize comnuation traffic and cache misses.
But their analysis is restricted to isomorphic iteration dath space<]S9Q.

Another framework presented i@ CS03 predicts the impact of optimizations for some
objective (e.g., performance, code size or energy). Thadveork consists of three types
of models: optimization models, code models and resouragefao By integrating these
models, a benefit value is calculated that represents trefibehapplying an optimization
in the context of given code for the objective representethbyesources.

Our framework, McEAT, is a preliminary step towards building a self-learningegsthat
selects optimal transformations based on loop bounds asfdegr program features that
have been beneficial in the past for a transformation or a gmatibn of transformations.

5.4 Program Specializations

Procedure cloning is an interprocedural optimization tégtee by which a compiler can
create specialized versions of function bodies calledie#i. Each clone expects different
set of parameters on the entry to the procedure. This pavesavéurther optimizations
of the procedure body. The call sites are then modified totlsalbppropriately optimized
version of the proceduréeCHK93.

68

5.4. Program Specializations

Dynamic dispatching is a major performance bottle-neclkpfmgrams written in object-
oriented style. The cost of performing method look-up makesmmically dispatched calls
(also known as virtual function calls and message sendgresxe. To avoid this cost,
optimizing compilers for object-oriented languages trgtatically-bind as many message
sends as possible to called methods. Static binding rexeli@ss information, so that set of
possible invocable methods can be determined and messagdge e be bound statically.
One way of improving the precision of class information, amdirectly to support more
static binding, is to compile multiple specialized versiaf a method, and each method
operates on a different input argumentsG95. Another program specialization tech-
nique called “customization” is also used to compile a sgexad version of a method for
each possible receiver class, and methods are never speditdr arguments other than
the receiverCU8Y.

[DCG99 have designed a goal-directed algorithm, that uses dymanoffile data to spe-

cialize hot methods rather than specializing exhaustivéglective method specialization
approach takes into account the cost and benefits of geamgp@aspecialized version of a
method using profile data. Therefore, this technique doesufter from serious code ex-
plosion and also does not generate identical multiple speed versions which could be
coalesced into one without a significant impact on prograrfopmance.

The semantics of dynamic programming languages make thesn@&aandidate for a va-
riety of optimizations including program specializatioot only at the function level, but
also at the loop level. In case of dynamic languages, the booly will be interpreted and
executed line-by-line which degrades the performance ofnams written in these lan-
guages. To reduce the interpretive overhead various tggbsilike vectorizationfLA07]
and use of profiled data to gather more information about tiggnal program pH10]
have been employed.

McFLAT, generates multiple versions of the original source codihvhre specialized
at the loop level. The main idea is to collect information atblmop-bounds and then
decide heuristically which loop-bound ranges are wortltisheing using a variety of loop
transformations. We observed significant speedups forgeeialized versions, and noted
that loop transformations had different impacts dependimthe loop range and execution

69

Related Work

engine. Our ultimate goal is to embed this framework in oudMcsystem.

5.5 Automatic Parallelism Detection and Vectorization

Static automatic parallelism extraction has been achigvdte pastBC04, LL97]. Unfor-
tunately, many parallelization opportunities could stdt be discovered by a static analysis
approach due to lack of information at the source code I&airnavitis et. al. have used
a profiling-based parallelism detection method that endsistatic data dependence anal-
ysis with dynamic information, resulting in larger amouatgarallelism uncovered from
sequential programs JWFO09. McFLAT, also uses profiling-based parallelism detection
but in the context of MTLAB programming language and within the constraints @ftM
LAB parallel loops.

[KPWT07] argue that current implementations of optimistic techieis| such as thread-
level speculation cannot uncover all opportunities of pa@liam because they do not use
the proper abstractions for the data structures in the progr Kulkarni et. al. {PW™07]
suggested an object-based optimistic parallelizatiotesydor irregular applications that
manipulate pointer-based data structures. “The Galotesyds an object-based shared-
memory model, which allows concurrent accesses and upiesbared objects by exploit-
ing the high level semantics of abstract data types.

A dimension abstraction approach for vectorization infAB presented ingLAO07] dis-
covers whether dimensions of an expression will be legaktterization occurs. The
dimensionality abstraction provides a representatioh@fshape of an expression if a loop
containing the expression was vectorized. To improve veton in cases which have in-
compatible vectorized dimensionality, a loop pattern blas& is provided which is capable
of resolving obstructing dimensionality disagreements.

70

5.6. Adaptive Compilation

5.6 Adaptive Compilation

Heuristics and statistical methods have already been usddtermining compiler opti-
mization sequences. For example, Cooper et. @599 developed a technique using
genetic algorithms to find “good” compiler optimization seqces for code size reduction.

Previous adaptive virtual machines have used method itremozounters to identify hotspots
in the program and optimize them. Holzle and Unget)p6] describe SELF-93 system,
an adaptive optimization system for SELF language. The gbt#ie project is to avoid
long pauses in interactive applications by optimizing guéyformance-critical parts of the
application. Method invocation counters with an exporamtecay mechanism are used to
identify candidates for optimization.

Whaley Wha0(, implemented sample based calling-context-sensitiedlprg in a pro-
duction JIT compiler. They have empirically demonstrateat their profiling technique
has low overhead and can give performance gain at startuptaady-state.

[Wha0Q GDGC99 have explored off-line profile directed compilation teajues that use
one or more profiles from previous runs of an application aeedlfack into a compiler to
make improved optimization decisions for future execwidduch systems include Digital
FX ! 32 [HH97], Morph [ZWG'97], and DCPI BBD "97)]. Jalapeo JVM AFG'00] uses
an adaption system that can invoke a compiler when profilatg duggests that recompil-
ing a method with additional optimization will be more bengii. Our work is a first step
towards developing an adaptive system that will be embeddedr McVM, that applies
loop transformations based on predicted data from prevexesution runs and profiled
information about the programs.

Previously work has been done on JIT compilation foxivas . MaJIC [APO1], combines
JIT-compilation with an offline code cache maintained tiglospeculative compilation
of Matlab code into C/Fortran. It derives the most benefit froptimizations such as
array bounds check removals and register allocation. Matksvintroduced the MTLAB
JIT-Accelerator [Mat0Z in MATLAB 6.5 that has accelerated the execution ofTiMAB
code. McVM [CBHV10, CB09 is also an effort towards JIT compilation for MLAB, it

71

Related Work

uses function specializations based on run-time type aof &rguments. McVM(JIT) has
shown performance speed-ups againstriaB for some of our benchmarks. McET, the
framework which is the topic of this thesis uses profiled paogfeatures and heuristically
determines loop bounds ranges to generate specializeédnvers loops in the program.

72

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this chapter, we start with an overview of the driving pipie in the designing of a
framework for MATLAB loop analysis and transformations the MefF. We then discuss
the contributions made by this thesis. Then, we briefly,udisdifferent phases of McKT.
We conclude with a discussion of results on four differergcesion engines. In the future
work section, we discuss possible enhancements that caonesi McCHAT.

Parallelization and optimization of the MLAB programming language presents several
challenges due to the dynamic nature oRIMAB. Since MATLAB does not have static
type declarations, neither the shape and size of arraystheoloop bounds are known
at compile-time. This means that many standard array depeedtests and associated
transformations cannot be applied straight-forwardly. t@mother hand, many MLAB
programs operate on arrays using loops and thus are idedided®s for loop transfor-
mations and possibly loop vectorization/parallelizatidficFLAT, was designed to gain
performance speedups by applying loop transformationse main hurdle in achieving
this goal was the lack of information about loop bounds whaihrequired for dependence
testing.

73

Conclusions and Future Work

We have described a new framework, MefF, which uses profile-based training runs
to collect information about loop bounds and ranges, and #pplies a range estimator
to estimate which ranges are most important. Specializeslores of the loops are then
generated for each predicated range. TherbAB code generated from MeRAT can be
run on any MATLAB virtual machine or interpreter.

Results obtained on four execution engines (Matlab, GNUectdcVM(JIT) and
McVM(interpreter) suggest that the impact of differentpomansformations on different
loop bounds is different and also depends on the executiginenWe were somewhat sur-
prised that loop reversal was fairly useful for several exien engines, especially on large
ranges. The framework also detects whether a loop is plzaliée or not. It detected quite
a few parallel loops and transformed them teMAB’s parfor construct, the execution
benefit was very limited and sometimes very detrimental. STowr McJIT compiler will
likely support a different parallel implementation whicashower overheads.

6.2 Future Work

In this section we look into possible improvements to défgrcomponents of MaFAT.
MCcFLAT has the potential to be further evaluated and its functigpnain be enhanced
which can make it an important component of our McVM.

Although McH_AT is already a useful stand-alone tool, in our overall plagd preliminary
step towards developing a self-learning system that wifdre of our McJIT. This adaptive
system will decide on whether to apply a loop transformabomot depending on the
benefits that the system has seen in the past and will suggreshpilation of code to gain
performance speedups.

As for Instrumenter is concerned, it can be extended to eixtnare features about program
loops, which can be useful for dependence analyzer and lamgformer. Information
like whether loop body invokes a function or operates onyari@an be useful for loop
transformer. This is because impact of different loop t@msations varies according to
the computation done in the loop body. When deciding on whaciges to specialize, it

74

6.2. Future Work

could be beneficial to focus on ranges which are likely to lexliifferent cache behavior.

Many of the integer linear programs from the data dependeocsists of inequalities that
involve only one unknown4SU8Y. The programs can be solved simply by testing if there
are integers between the constant upper bounds and colwstantoounds independently.
Currently, MCHAT implements a few dependence tests that have proved to befexaar
benchmark suite. Other dependence tests likeAthelic Testthe The Loop Residue Test
can be implemented fairly easily in our framework.

Currently, McRAT supports a limited set of loop transformations. Other loapdforma-
tions like Loop SkewingndTiling can be added to increase parallelism opportunities.

Our initial exploratory experiments validate that diffietéoop transformations are benefi-
cial for different ranges. Future work will focus on extiagtmore information about the
program features from profiling, maintaining a mapping lesta loop bounds, program
features and effective loop transformations and makingafiggast experience to make
future decisions on whether to apply transformations or not

75

Conclusions and Future Work

76

Appendix A

User Manual

MCcCFLAT, is executed using the “Main” entry point of the Mgk project. “-danalysis” flag
indicates to run McEAT.

A.l1 Flags
McFLAT supports the following list of flags:

* -m -danalysis -dir -prof crni

Above mentioned flag "-prof” is used to instrument originakM AB code which
when executed ejects additional information. "-dir” inglies that the starting point
is a directory structure. If the "-dir” flag is not there, thilcFLAT expects a”.m” file
as an input. As aresult of this phase a directory with the naepé BenchmarkName
) is created.

* -m -danalysis -dir -heur crni
"-heur” flag indicates to rurRange Estimatoon the Loop profiling Information
(.xml).

77

User Manual

e -m -danalysis -dir -auto crni
"-auto” flag indicates to apply loop transformations auttinaly on the input ”.m”
files.

* -m -danalysis -dir -anno crni
"-anno” flag indicates to apply only those loop transformas that are annotated in
the loop body.

languages/Natlab/src/natlab/toolkits/DependenceAnalysis - McFLAT
source Java files, which includes the complete MaFsystem.

Specialized versions of ”.m” file will be generatediep BenchmarkNamgand they can
be executed on any MLAB systems.

78

Bibliography

[ABD*97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sarinemawat,

[AFG*00]

[AH10]

[AKS7]

[AL]

Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark/an-
devoorde, Carl A. Waldspurger, and William E. Weildlontinuous profiling:
where have all the cycles gone&ACM Trans. Comput. Systl5(4):357-390,
1997.

Matthew Arnold, Stephen Fink, David Grove, Michael Hirahd Peter F.
SweeneyAdaptive optimization in the Jalapeno JVNh OOPSLA '00: Pro-

ceedings of the 15th ACM SIGPLAN conference on Object-@tgotogram-

ming, systems, languages, and applicatjdii;ineapolis, Minnesota, United
States, 2000, pages 47—-65. ACM, New York, NY, USA.

Amina Aslam and Laurie Hendren. McFLAT: A profile-asframework for
matlab loop analysis and transformations. Technical R&p®BLE-TR-2010-
6, Sable Research Group, School of Computer Science, McGillelsity,
Montréal, Quebec, Canada, 2010.

Randy Allen and Ken Kennedyautomatic translation of FORTRAN programs
to vector form ACM Trans. Program. Lang. Sys8(4):491-542, 1987.

Computer Architecture and Parallel Systems Laborat@ryen64 Home page
http://www.open64.net

79

http://doi.acm.org/10.1145/265924.265925
http://doi.acm.org/10.1145/353171.353175
http://doi.acm.org/10.1145/29873.29875
http://www.open64.net
http://www.open64.net

Bibliography

[APO1]

[ASUSS5]

[Ban88]

[BCO4]

[BLAOT7]

[Cas09]

[CB9Sg]

[CBO9]

[CBHV10]

[CHK93]

George Almasi and David A. Padu&laJIC: A MATLAB just-in-time com-
piler. In Languages and Compilers for Parallel ComputirRP01. Springer
Berlin / Heidelberg.

A. V. Aho, R. Sethi, and J. D. Ullmar€ompilers: Principles, Techniques and
Tools Addison Wesley, 1985.

Utpal K. BanerjeeDependence Analysis for Supercomputikduwer Aca-
demic Publishers, Norwell, MA, USA, 1988.

Michael G. Burke and Ron K. Cytroninterprocedural dependence analysis
and parallelizationSIGPLAN Not.39(4):139-154, 2004.

Neil Birkbeck, Jonathan Levesque, and Jose Nelson ramaA dimension
abstraction approach to vectorization in Matlalm CGO '07: Proceedings
of the International Symposium on Code Generation and Opditioin 2007,
pages 115-130. IEEE Computer Society, Washington, DC, USA.

Andrew Casey.Metalexer: The Lexical Specification LanguagMaster’s
thesis, Monteal, Qebec, Canada, August 2009.

Sephane Chauveau and Franois Bodidenhir: An environment for high
performance Matlab In David OHallaron, editorLanguages, Compilers,
and Run-Time Systems for Scalable Computeadume 1511 oflLecture
Notes in Computer Sciengeages 27-40. Springer Berlin / Heidelberg, 1998.
10.1007/3-540-49530-3.

Maxime Chevalier-Boisvert. McVM: An optimizing virtuahachine for
the MATLAB programming language. Master’s thesis, Méal;r Qwebec,
Canada, August 20009.

Maxime Chevalier-Boisvert, Laurie Hendren, and Clagtifugge. Optimiz-
ing MATLAB through Just-In-Time Specialization. @C '10:, March 2010.

Keith D. Cooper, Mary W. Hall, and Ken Kennedi.methodology for proce-
dure cloning Computer Language49(2):105 - 117, 1993.

80

http://dx.doi.org/10.1007/3-540-45574-4_510.1007/3-540-45574-4_5
http://doi.acm.org/10.1145/989393.989411
http://dx.doi.org/10.1109/cgo.2007.1
http://www.sable.mcgill.ca/mclab
http://dx.doi.org/10.1007/3-540-49530-4_3
http://www.sciencedirect.com/science/article/b6tyk-48vwvrr-2f/2/b5e5c7f0b6dbdd8c70d02012b7221ae8

Bibliography

[CSS99]

[Cu89]

[DBO5]

[DCGY5]

[DE73]

[DRP96]

[DS90]

[EHO7]

[FLVGO5]

Keith D. Cooper, Philip J. Schielke, and Devika Sulamaian. Optimizing for
reduced code space using genetic algorithmLCTES '99: Proceedings of
the ACM SIGPLAN 1999 workshop on Languages, compilers, and foo
embedded systeimAtlanta, Georgia, United States, 1999, pages 1-9. ACM,
New York, NY, USA.

C. Chambers and D. Ungatustomization: optimizing compiler technology
for SELF, a dynamically-typed object-oriented programgnizmguage SIG-
PLAN Not, 24(7):146-160, 1989.

Hanselman D and Littlefield BMastering Matlab 7 Pearson Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2005.

Jeffrey Dean, Craig Chambers, and David Grdvelective specialization for
object-oriented languageSIGPLAN Not.30(6):93-102, 1995.

George B. Dantzig and B. Curtis Eaves. Fourier-motzkmiaation and its
dual. J. Comb. Theory, Ser.,A4(3):288-297, 1973.

Luiz De Rose and David Padua.MATLAB to Fortran 90 translator and its
effectiveness In ICS '96: Proceedings of the 10th international conference
on SupercomputingPhiladelphia, Pennsylvania, United States, 1996, pages
309-316. ACM, New York, NY, USA.

Jack Dongarra and Robert Schreiber. Automatic blagkif nested loops.
Technical report, Knoxville, TN, USA, 1990.

Torbjorn Ekman and Grel Hedin.The JastAdd extensible Java compilSIG-
PLAN Not, 42(10):1-18, 2007.

Agusfn Ferrandez, Jas M. Llabe@, and Miguel Valero-Garcia.oop trans-
formation using nonunimodular matricd&EE Transactions on Parallel and
Distributed System$:832—-840, 1995.

81

http://doi.acm.org/10.1145/314403.314414
http://doi.acm.org/10.1145/74818.74831
http://doi.acm.org/10.1145/223428.207119
http://doi.acm.org/10.1145/237578.237627
http://doi.acm.org/10.1145/1297105.1297029
http://doi.ieeecomputersociety.org/10.1109/71.406959

Bibliography

[FM85]

J. A. B. Fortes and D. |. MoldovarParallelism detection and transformation
techniques useful for VLSI algorithmsJournal of Parallel and Distributed
Computing 2(3):277 — 301, 1985.

[GDGC95] David Grove, Jeffrey Dean, Charles Garrett, and Cr@lgambers.

[HAA +96]

[HH97]

[Hof04]

[HU96]

[JBO7]

[Kan87]

[KPW+07]

Profile-guided receiver class predictiolmn OOPSLA '95: Proceedings of the
tenth annual conference on Object-oriented programmisgesys, languages,
and applications Austin, Texas, United States, 1995, pages 108-123. ACM,
New York, NY, USA.

Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasin@rean R. Mur-
phy, Shih-Wei Liao, Edouard Bugnion, and Monica S. Laiaximizing mul-
tiprocessor performance with the suif compil@omputey 29:84—-89, 1996.

Raymond J. Hookway and Mark A. Herdeg. Digital fx!3zZinabining emula-
tion and binary translatiorDigital Tech. J, 9(1):3-12, 1997.

H.P. HofsteeFuture microprocessors and off-chip sop interconn&dvanced
Packaging, IEEE Transactions p#7(2):301 — 303, may 2004.

Urs Holzle and David UngariReconciling responsiveness with performance in
pure object-oriented languag&CM Trans. Program. Lang. Sys18(4):355—
400, 1996.

Pramod G. Joisha and Prithviraj Banerjéetranslator system for the matlab
language: Research articléSoftw. Pract. Exper37(5):535-578, 2007.

Ravi Kannan.Minkowski’s convex body theorem and integer programming
Mathematics of Operations Researd2(3):415-440, 1987.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rararayanan,
Kavita Bala, and L. Paul ChewDptimistic parallelism requires abstractions
In PLDI '07: Proceedings of the 2007 ACM SIGPLAN conference am Pr
gramming language design and implementati®an Diego, California, USA,
2007, pages 211-222. ACM, New York, NY, USA.

82

http://www.sciencedirect.com/science/article/b6wkj-4brjjjr-9s/2/33a6c7e0d397e6a1865a71cad778cb3f
http://doi.acm.org/10.1145/217838.217848
http://doi.ieeecomputersociety.org/10.1109/2.546613
file:10.1109/tadvp.2004.830355
http://doi.acm.org/10.1145/233561.233562
http://dx.doi.org/10.1002/spe.v37:5
http://www.jstor.org/stable/3689974
http://doi.acm.org/10.1145/1250734.1250759

Bibliography

[Lam74]

[Len83]

[Li09]

[LLO7]

[LWO04]

[Mata]

[Matb]
[Mat02]
[mcl]

[MHLO1]

[Moo006]

[Par90]

Leslie Lamport. The parallel execution of DO loops Commun. ACM
17(2):83-93, 1974.

Jr. Lenstra, H. W.Integer programming with a fixed number of variables
Mathematics of Operations Researéii4):538-548, 1983.

Jun Li. Mcfor: a MATLAB-to-Fortran 95 compiler. master’s thesiMaster’s
thesis, Monteal, Qebec, Canada, August 2009.

Amy W. Lim and Monica S. Lam.Maximizing parallelism and minimizing
synchronization with affine transformsin POPL '97: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of prograim thaim-
guagesParis, France, 1997, pages 201-214. ACM, New York, NY, USA.

Monica S. Lam and Michael E. WoIfA data locality optimizing algorithm
SIGPLAN Not.39(4):442-459, 2004.

Matlab. The Language Of Technical Computing Home page
http://www.mathworks.com/products/matlab/

Matlab. The Origin of MATLAB.
Accelerating Matlab: The MATLAB JIT-Acceleratp2002.
McLab: An extensible compiler framework for Matlab

Dror E. Maydan, John L. Hennessy, and Monica S. Ldafficient and exact
data dependence analys®iGPLAN Not.26(6):1-14, 1991.

Holly Moore. MATLAB for Engineers (ESource Serie®rentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 2006.

Review of "highly parallel computing” by g. s. almasi and attgieb, benjam-
In-cummings publishers, redwood city, ca, 198M Syst. J.29(1):165-166,
1990. Reviewer-Lorin, Harold R.

83

http://doi.acm.org/10.1145/360827.360844
http://www.jstor.org/stable/3689168
http://www.sable.mcgill.ca/mclab/matlab_fortran.html
http://doi.acm.org/10.1145/263699.263719
http://doi.acm.org/10.1145/989393.989437
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/company/newsletters/news_notes/clevescorner/dec04.html
http://www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf
http://www.sable.mcgill.ca/mclab/
http://doi.acm.org/10.1145/113446.113447
http://dx.doi.org/10.1147/sj.291.0165

Bibliography

[PEH"93] David A. Padua, Rudolf Eigenmann, Jay Hoeflinger, Paw¢i8eh, Peng Tu,
Stephen Weatherford, and Keith Faigin. Polaris: A new-geien paralleliz-
ing compiler for MPPs. Technical report, In CSRD Rept. No. 130@iv. of
lllinois at Urbana-Champaign, 1993.

[PHO5] D.A. Patterson and J.L. Hennesg§omputer Organization and Design: The
Hardware/software InterfaceMorgan Kaufmann, 2005.

[PP94] Kleanthis Psarris and Santosh Pardeempirical study of the | Test for exact
data dependencdn ICPP '94: Proceedings of the 1994 International Con-
ference on Parallel Processing994, pages 92-96. IEEE Computer Society,
Washington, DC, USA.

[Pug91l] William Pugh.The omega test: a fast and practical integer programming al-
gorithm for dependence analysi® Supercomputing '91: Proceedings of the
1991 ACM/IEEE conference on Supercomputiiipuquerque, New Mexico,
United States, 1991, pages 4-13. ACM, New York, NY, USA.

[QuiB4] Patrice QuintonAutomatic synthesis of systolic arrays from uniform reeuitr
equations In ISCA '84: Proceedings of the 11th annual international sympo
sium on Computer architecturé984, pages 208-214. ACM, New York, NY,
USA.

[RGG'96] Luiz De Rose, Kyle Gallivan, Efstratios Gallopoulos, BetMarsolf, and
David A. Padua. Falcon: A MATLAB interactive restructuriegmpiler. In
LCPC '95: Proceedings of the 8th International Workshop onduzages and
Compilers for Parallel Computingl996, pages 269-288. Springer-Verlag,
London, UK.

[Sar97] V. Sarkar.Automatic selection of high-order transformations in tB&l XL
FORTRAN compilersIBM J. Res. Dey41(3):233-264, 1997.

[Sch86] Alexander SchrijverTheory of linear and integer programmingohn Wiley
& Sons, Inc., New York, NY, USA, 1986.

84

http://dx.doi.org/10.1109/icpp.1994.55
http://doi.acm.org/10.1145/125826.125848
http://doi.acm.org/10.1145/800015.808184
http://dx.doi.org/10.1147/rd.413.0233

Bibliography

[Sho81]

[TAH10]

[TWFOO09]

[Walgs]

[Wha0o]

[WLO1]

[Wol90]

[ZCS03]

[ZWG*97]

Robert ShostakDeciding linear inequalities by computing loop residuds
ACM, 28(4):769-779, 1981.

Anton Dubrau Toheed Aslam, Jesse Doherty and Ladaedren. Aspectmat-
lab: An aspect-oriented scientific programming languageAQ@SD '10:Pro-
ceedings of 9th International Conference on Aspect-OrikBieftware Devel-
opmentMarch 2010, pages 181-192.

Georgios Tournavitis, Zheng Wang, a8y Franke, and Michael F.P. O’'Boyle.
Towards a holistic approach to auto-parallelization: gnéing profile-driven
parallelism detection and machine-learning based mapBiGPLAN Not.
44(6):177-187, 2009.

D. R. Wallace. Dependence of multi-dimensional array referencésICS
'88: Proceedings of the 2nd international conference onescpmputing St.
Malo, France, 1988, pages 418-428. ACM, New York, NY, USA.

John Whaley.A portable sampling-based profiler for java virtual mackine
In JAVA "00: Proceedings of the ACM 2000 conference on Java Gx&san
Francisco, California, United States, 2000, pages 78-87. AR&Wv York,
NY, USA.

M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm
to maximize parallelism IEEE Trans. Parallel Distrib. Syst2(4):452-471,
1991.

Micheal Wolfe. Optimizing Supercompilers for SupercomputeiT Press,
Cambridge, MA, USA, 1990.

Min Zhao, Bruce Childers, and Mary Lou Soff&redicting the impact of
optimizations for embedded systen®iGPLAN Not.38(7):1-11, 2003.

Xiaolan Zhang, Zheng Wang, Nicholas Gloy, J. Bradley Ched,Michael D.
Smith. System support for automatic profiling and optimizatio8IGOPS
Oper. Syst. Rev31(5):15-26, 1997.

85

http://doi.acm.org/10.1145/322276.322288
http://doi.acm.org/10.1145/1543135.1542496
http://doi.acm.org/10.1145/55364.55405
http://doi.acm.org/10.1145/337449.337483
http://dx.doi.org/10.1109/71.97902
http://doi.acm.org/10.1145/780731.780734
http://doi.acm.org/10.1145/269005.266640

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Thesis Outline

	Background
	The MATLAB Language
	Matlab's Execution Environment
	Supported Features
	MATLAB's Control Flow
	For Loops
	Syntax
	Description
	Array and Array Operations in Matlab
	MATLAB Code Examples
	Loop Optimization Challenges

	The McLab Framework
	Overview

	McFLAT: A Framework for Loop Analysis and Transformations for Matlab
	Introduction
	Overall Architecture
	Profiler
	Range Estimator
	Algorithm of Range Estimator

	Dependence Analysis
	Extended GCD Test
	SVPC: Single Variable Per Constraint Test

	Loop Transformations
	Distance Vector
	Loop Reversal
	Loop Interchange
	Legality of Unimodular Transformations

	McFLAT: As a Test-Bed for Loop Transformations Application
	Output of McFlat
	Parallelism Detection
	Types of Dependency

	Limitations of McFlat

	Experimental Results
	Benchmarks and Static Information
	Performance Study for Standard Loop Transformations
	Performance study for Parallel For Loops

	Related Work
	Efficient And Exact Dependence Analysis
	Loop Transformations
	Impact of Loop Transformations
	Program Specializations
	Automatic Parallelism Detection and Vectorization
	Adaptive Compilation

	Conclusions and Future Work
	Conclusions
	Future Work

	User Manual
	Flags

	Bibliography

