Skip to main content

Abstract

Recently, a novelty multinomial logistic regression method where the initial covariate space is increased by adding the nonlinear transformations of the input variables given by Gaussian Radial Basis Functions (RBFs) obtained by an Evolutionary Algorithm was proposed. However, there still exist some problems with the standard Gaussian RBF, for example, the approximation of constant valued functions or the approximation of high dimensionality associated to some real problems. In order to face of these problems, we propose the use of the Generalized Gaussian RBF (GRBF) instead of the standard Gaussian RBF. Our approach has been validated with a real problem of disability classification, to evaluate its effectiveness. Experimental results show that this approach is able to achieve good generalization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castano, A., Hervás-Martínez, C., Gutiérrez, P.A., Fernández-Navarro, F., Garcia, M.M.: Classification by evolutionary generalized radial basis functions. In: ISDA, pp. 203–208. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  2. Corchado, E., Arroyo, Á., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of IGPL (2010) (in press)

    Google Scholar 

  3. Gutiérrez, P.A., Hervás-Martínez, C., Lozano, M.: Designing multilayer perceptrons using a guided saw-tooth evolutionary programming algorithm. Soft Computing 14(4), 599–613 (2010)

    Article  Google Scholar 

  4. Gutiérrez, P.A., Hervás-Matínez, C., Martínez-Estudillo, F.J.: Logistic regression by means of evolutionary radial basis function neural networks. IEEE Transactions on Neural Networks (in press)

    Google Scholar 

  5. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Machine Learning 59(1-2), 161–205 (2005)

    Article  MATH  Google Scholar 

  6. Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A., Martínez-Estudillo, A.C.: Evolutionary product-unit neural networks classifiers. Neurocomputing 72(1-2), 548–561 (2008)

    Article  Google Scholar 

  7. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Data Management Systems. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Méndez, A.C., Fernández-Navarro, F., Gutiérrez, P.A., Baena-García, M., Hervás-Martínez, C. (2011). Combining Evolutionary Generalized Radial Basis Function and Logistic Regression Methods for Classification. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19644-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19643-0

  • Online ISBN: 978-3-642-19644-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics