Skip to main content

Abstract

This paper proposes a visual approach based on a 3D scatter plot, which is applied to DNA microarray data cluster analysis. To do that, an algorithm of computing boundary genes of a cluster is presented. After applying this algorithm, it is possible to build 3D cluster surfaces. On the other hand, gene clusters on the scatter plot can be visually validated with a reference partition of the used data set. The experiments showed that this approach can be useful in DNA microarray cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  2. Boissonnat, J.D., Teillaud, M.: Mathematics and Visualization. Springer, Heidelberg (2006)

    Google Scholar 

  3. Castellanos-Garzón, J.A., García, C.A., Quintales, L.A.M.: An evolutionary hierarchical clustering method with a visual validation tool. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 367–374. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Chan, Z.S.H., Kasabov, N.: Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method. In: IEEE International Joint Conference on Neural Networks, vol. 3, pp. 1669–1674 (2004)

    Google Scholar 

  5. Corchado, E., Herrera, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002

    Google Scholar 

  6. Geoffrey, J.M., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data. John Wiley & Sons, Inc., Hoboken (2004)

    MATH  Google Scholar 

  7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier Inc., Amsterdam (2006)

    Google Scholar 

  8. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78. ACM, New York (1992), http://doi.acm.org/10.1145/133994.134011

    Chapter  Google Scholar 

  9. Jain, A.K., Murty, N.M., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  10. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)

    Article  Google Scholar 

  11. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Clustering Analysis. John Wiley & Sons, Inc., Hoboken (2005)

    Google Scholar 

  13. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: Proc. ACM SIGMOD, pp. 201–212 (2000)

    Google Scholar 

  14. Krantz, S.G., Saltman, D., Sallinger, D., Stern, R.: Metric Spaces. Library of Congress Cataloging-in-Publication Data (1964)

    Google Scholar 

  15. Marić, M., Marić, F., Mijajlović, Z., Jovanović, B.: Automatic construction of surface model. Tech. rep., School of Mathematics, University of Belgrade, Belgrade, Serbia and Montenegro (2005)

    Google Scholar 

  16. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  17. Pal, S.K., Bandyopadhyay, S., Murthy, C.A.: Evolutionary computation in bioinformatics: A review. IEEE Transactions on Systems, Man and Cybernerics, Part C 36, 601–615 (2006)

    Article  Google Scholar 

  18. Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17, 103–115 (2010)

    Google Scholar 

  19. Simmons, G.F.: Introduction to Topology and Modern analysis. Mcgra W-H1Ll Book Company, Inc. (1963)

    Google Scholar 

  20. Tao, Y., Papadias, D., Lian, X.: Reverse KNN search in arbitrary dimensionality. In: Proc. Int’l Conf. Very Large Data Bases, pp. 744–755 (2004)

    Google Scholar 

  21. Thomas, J., Cook, K.: A visual analytics agenda. Computer Graphics and Applications. IEEE 26(1), 10–13 (2006), doi:10.1109/MCG.2006.5

    Google Scholar 

  22. Aigner, W., Bertone, A., Miksch, S.: Tutorial: Introduction to visual analytics. In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 453–456. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Xia, C., Hsu, W., Lee, M.L., Ooi, B.C.: Border: Efficient computation of boundary points. IEEE Transactions on Knowledge and Data Engineering 18, 289–303 (2006)

    Article  Google Scholar 

  24. Yee-Yeung, K.: Clustering analysis of gene expression data. PhD thesis, University of Washintong (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García, C.A., Castellanos-Garzón, J.A., Blanco, C.G. (2011). Analyzing Gene Expression Data on a 3D Scatter Plot. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19644-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19643-0

  • Online ISBN: 978-3-642-19644-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics