Abstract
This paper proposes a visual approach based on a 3D scatter plot, which is applied to DNA microarray data cluster analysis. To do that, an algorithm of computing boundary genes of a cluster is presented. After applying this algorithm, it is possible to build 3D cluster surfaces. On the other hand, gene clusters on the scatter plot can be visually validated with a reference partition of the used data set. The experiments showed that this approach can be useful in DNA microarray cluster analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)
Boissonnat, J.D., Teillaud, M.: Mathematics and Visualization. Springer, Heidelberg (2006)
Castellanos-Garzón, J.A., García, C.A., Quintales, L.A.M.: An evolutionary hierarchical clustering method with a visual validation tool. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 367–374. Springer, Heidelberg (2009)
Chan, Z.S.H., Kasabov, N.: Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method. In: IEEE International Joint Conference on Neural Networks, vol. 3, pp. 1669–1674 (2004)
Corchado, E., Herrera, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010), doi:10.1016/j.asoc.2010.07.002
Geoffrey, J.M., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data. John Wiley & Sons, Inc., Hoboken (2004)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier Inc., Amsterdam (2006)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78. ACM, New York (1992), http://doi.acm.org/10.1145/133994.134011
Jain, A.K., Murty, N.M., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–1386 (2004)
Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Clustering Analysis. John Wiley & Sons, Inc., Hoboken (2005)
Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: Proc. ACM SIGMOD, pp. 201–212 (2000)
Krantz, S.G., Saltman, D., Sallinger, D., Stern, R.: Metric Spaces. Library of Congress Cataloging-in-Publication Data (1964)
Marić, M., Marić, F., Mijajlović, Z., Jovanović, B.: Automatic construction of surface model. Tech. rep., School of Mathematics, University of Belgrade, Belgrade, Serbia and Montenegro (2005)
Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)
Pal, S.K., Bandyopadhyay, S., Murthy, C.A.: Evolutionary computation in bioinformatics: A review. IEEE Transactions on Systems, Man and Cybernerics, Part C 36, 601–615 (2006)
Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17, 103–115 (2010)
Simmons, G.F.: Introduction to Topology and Modern analysis. Mcgra W-H1Ll Book Company, Inc. (1963)
Tao, Y., Papadias, D., Lian, X.: Reverse KNN search in arbitrary dimensionality. In: Proc. Int’l Conf. Very Large Data Bases, pp. 744–755 (2004)
Thomas, J., Cook, K.: A visual analytics agenda. Computer Graphics and Applications. IEEE 26(1), 10–13 (2006), doi:10.1109/MCG.2006.5
Aigner, W., Bertone, A., Miksch, S.: Tutorial: Introduction to visual analytics. In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 453–456. Springer, Heidelberg (2007)
Xia, C., Hsu, W., Lee, M.L., Ooi, B.C.: Border: Efficient computation of boundary points. IEEE Transactions on Knowledge and Data Engineering 18, 289–303 (2006)
Yee-Yeung, K.: Clustering analysis of gene expression data. PhD thesis, University of Washintong (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, C.A., Castellanos-Garzón, J.A., Blanco, C.G. (2011). Analyzing Gene Expression Data on a 3D Scatter Plot. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-19644-7_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19643-0
Online ISBN: 978-3-642-19644-7
eBook Packages: EngineeringEngineering (R0)