Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 87))

  • 1318 Accesses

Abstract

This research analyzes the meteorological conditions of four different places in Spain. The case study is based on real data provided by the AEMET (Meteorological Spanish Agency) in 2009. Thirteen variables with atmospheric conditions are considered. Different Statistical and Soft Computing Models are applied to show the great variability of the environmental conditions in the four well selected places. The results are confirmed by the Annual Environmental Summarized 2009 provided by the AEMET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. AEMET – Agencia Española de Meteorología, Public Access Database, http://www.aemet.es/es/servidor-datos/acceso-datos (last Access: 03/01/2011)

  2. AEMET - Agencia Española de Meteorología Annual Climatology Summarized (2009), http://www.aemet.es/documentos/es/elclima/datos_climat/resumenes_climat/anuales/res_anual_clim_2009.pdf (last Access: 03/01/2011)

  3. Arroyo, A., Corchado, E., Tricio, V.: Atmospheric Pollution Analysis by Unsupervised Learning. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 767–772. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Arroyo, A., Corchado, E., Tricio, V.: Computational Methods for Immision Analysis of Urban Atmospheric Pollution. In: 9th International Conference Computational and Mathematical Methods in Science and Engineering, Gijón (2009)

    Google Scholar 

  5. Arroyo, A., Corchado, E., Tricio, V.: Soft computing models for an environmental application. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds.) SOCO 2010. Advances in Intelligent and Soft Computing, vol. 73, pp. 127–135. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Corchado, E., Arroyo, A., Tricio, V.: Soft Computing Models to Identify Typical Meteoro-logical Days. Logic Journal of the IGPL (July 2010), ISSN 1368-9894 - Print ISSN 1367-0751, Impact factor:0.326

    Google Scholar 

  7. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 37(3), 77–84 (1994)

    Article  MathSciNet  Google Scholar 

  8. Subudhi, B., Morris, A.S.: Soft computing methods applied to the control of a flexible robot manipulator. Applied Soft Computing 9(1), 149–158 (2009)

    Article  Google Scholar 

  9. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2002)

    Google Scholar 

  10. Oja, E., Ogawa, H., Wangviwattana, J.: Principal Components Analysis by Homogeneous Neural Networks, part 1. The Weighted Subspace Criterion. IEICE Transaction on Information and Systems E75D, 375–366 (1992)

    Google Scholar 

  11. Fyfe, C., Baddeley, R.: Non-linear data structure extraction using simple Hebbian networks. Biological Cybernetics 72(6), 541–533 (1995)

    Google Scholar 

  12. Oja, E.: Neural Networks, Principal Components and Subspaces. International Journal of Neural Systems 1, 68–61 (1989)

    Google Scholar 

  13. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Min. Knowl. Discov. 8(3), 203–225 (2004)

    Article  MathSciNet  Google Scholar 

  14. Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 17(8), 1447–1466 (2003)

    Article  Google Scholar 

  15. Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. Journal of Experimental and Theoretical Artificial Intelligence 15(4), 473–487 (2003)

    Article  MATH  Google Scholar 

  16. Corchado, E., Burgos, P., Rodriguez, M., Tricio, V.: A Hierarchical Visualization Tool to Analyse the Thermal Evolution of Construction Materials. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 238–245. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arroyo, Á., Corchado, E., Tricio, V. (2011). A Climatologycal Analysis by Means of Soft Computing Models. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19644-7_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19643-0

  • Online ISBN: 978-3-642-19644-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics