Abstract
This research analyzes the meteorological conditions of four different places in Spain. The case study is based on real data provided by the AEMET (Meteorological Spanish Agency) in 2009. Thirteen variables with atmospheric conditions are considered. Different Statistical and Soft Computing Models are applied to show the great variability of the environmental conditions in the four well selected places. The results are confirmed by the Annual Environmental Summarized 2009 provided by the AEMET.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AEMET – Agencia Española de Meteorología, Public Access Database, http://www.aemet.es/es/servidor-datos/acceso-datos (last Access: 03/01/2011)
AEMET - Agencia Española de Meteorología Annual Climatology Summarized (2009), http://www.aemet.es/documentos/es/elclima/datos_climat/resumenes_climat/anuales/res_anual_clim_2009.pdf (last Access: 03/01/2011)
Arroyo, A., Corchado, E., Tricio, V.: Atmospheric Pollution Analysis by Unsupervised Learning. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 767–772. Springer, Heidelberg (2009)
Arroyo, A., Corchado, E., Tricio, V.: Computational Methods for Immision Analysis of Urban Atmospheric Pollution. In: 9th International Conference Computational and Mathematical Methods in Science and Engineering, Gijón (2009)
Arroyo, A., Corchado, E., Tricio, V.: Soft computing models for an environmental application. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds.) SOCO 2010. Advances in Intelligent and Soft Computing, vol. 73, pp. 127–135. Springer, Heidelberg (2010)
Corchado, E., Arroyo, A., Tricio, V.: Soft Computing Models to Identify Typical Meteoro-logical Days. Logic Journal of the IGPL (July 2010), ISSN 1368-9894 - Print ISSN 1367-0751, Impact factor:0.326
Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 37(3), 77–84 (1994)
Subudhi, B., Morris, A.S.: Soft computing methods applied to the control of a flexible robot manipulator. Applied Soft Computing 9(1), 149–158 (2009)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2002)
Oja, E., Ogawa, H., Wangviwattana, J.: Principal Components Analysis by Homogeneous Neural Networks, part 1. The Weighted Subspace Criterion. IEICE Transaction on Information and Systems E75D, 375–366 (1992)
Fyfe, C., Baddeley, R.: Non-linear data structure extraction using simple Hebbian networks. Biological Cybernetics 72(6), 541–533 (1995)
Oja, E.: Neural Networks, Principal Components and Subspaces. International Journal of Neural Systems 1, 68–61 (1989)
Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Min. Knowl. Discov. 8(3), 203–225 (2004)
Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 17(8), 1447–1466 (2003)
Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. Journal of Experimental and Theoretical Artificial Intelligence 15(4), 473–487 (2003)
Corchado, E., Burgos, P., Rodriguez, M., Tricio, V.: A Hierarchical Visualization Tool to Analyse the Thermal Evolution of Construction Materials. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 238–245. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arroyo, Á., Corchado, E., Tricio, V. (2011). A Climatologycal Analysis by Means of Soft Computing Models. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds) Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011. Advances in Intelligent and Soft Computing, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19644-7_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-19644-7_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19643-0
Online ISBN: 978-3-642-19644-7
eBook Packages: EngineeringEngineering (R0)