Skip to main content

Genetically Regulated Metabolic Networks: Gale-Nikaido Modules and Differential Inequalities

  • Chapter
Transactions on Computational Systems Biology XIII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 6575))

  • 629 Accesses

Abstract

We propose an approach to study static properties of metabolic networks with genetic regulation. We base our results on differential inequalities which are constraints on the values of the partial derivatives of the reaction rate functions. The approach uses an iterative elimination method for the steady state equations involving algebraic modules that satisfy the Gale-Nikaido global univalence property. The same method allows to find conditions for unique steady state. In the case of metabolic pathways, partial elimination of variables can produce several alternative models, allowing to compare steady state changes of metabolites with and without genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blavy, P., Gondret, F., Guillou, H., Lagarrigue, S., Martin, P.G.P., van Milgen, J., Radulescu, O., Siegel, A.: A minimal model for hepatic fatty acid balance during fasting: Application to PPAR alpha-deficient mice. Journal of Theoretical Biology 261(2), 266–278 (2009)

    Article  MathSciNet  Google Scholar 

  2. Barnouin, S., Lassere, F., Cantiello, M., Guillou, H., Pineau, T., Martin, P.: A kinetic view of coordinate modulations of gene expresion and metabolism in wild-type and PPARα-/- mice during fasting. In: Conference of the Paul Hamel Institute, Monaco (2004)

    Google Scholar 

  3. Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics. Portland Press, London (1995)

    Google Scholar 

  4. Clément, K., Ferré, P.: Genetics and the pathophysiology of obesity. Pediatric Research 53, 721–725 (2003)

    Article  Google Scholar 

  5. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proceedings of the National Academy of Sciences 103(23), 8697 (2006)

    Article  MATH  Google Scholar 

  6. Duplus, E., Forest, C.: Is there a single mechanism for fatty acid regulation of gene transcription? Biochemical Pharmacology 64, 893–901 (2004)

    Article  Google Scholar 

  7. Fell, D.: Understanding the control of metabolism. Portland Press, London (1997)

    Google Scholar 

  8. Jump, D.B.: Fatty acid regulation of gene transcription. Critical Rev. in Clinical Lab. Sci. 41, 41–78 (2004)

    Article  Google Scholar 

  9. Kitayama, T., Kinoshita, A., Sugimoto, M., Nakayama, Y., Tomita, M.: A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles. Theoretical Biology and Medical Modelling 3, 24 (2006)

    Article  Google Scholar 

  10. Lee, S., et al.: Requirement of PPARα in maintaining phospolipid and triaglycerol homeostasis during energy deprivation. J. Lipid Res. 4, 2025–2037 (2004)

    Article  Google Scholar 

  11. Lee, J.M., Gianchandani, E.P., Papin, J.A.: Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics 7(2), 140 (2006)

    Article  Google Scholar 

  12. Parthasarathy, T.: On Global Univalence Theorems. Lecture Notes in Mathematics, vol. 977. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  13. Pégorier, J.-P., Le May, C.: Régulation de l’expression génique par les acides gras (Control of gene expression by fatty acids). Nutrition clinique et métabolisme 17, 80–88 (2003)

    Article  Google Scholar 

  14. Radulescu, O., Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications of multiscale biochemical networks. BMC Systems Biology 2(1), 86 (2008)

    Article  Google Scholar 

  15. Radulescu, O., Lagarrigue, S., Siegel, A., Veber, P., Le Borgne, M.: Topology and linear response of interaction networks in molecular biology. Journal of The Royal Society Interface 3(6), 185–196 (2006)

    Article  Google Scholar 

  16. Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical biosciences 87(1), 83–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steadt states or sustained oscillations. Springer Ser. Synergetics 9, 180–193 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radulescu, O., Siegel, A., Pécou, E., Chatelain, C., Lagarrigue, S. (2011). Genetically Regulated Metabolic Networks: Gale-Nikaido Modules and Differential Inequalities. In: Priami, C., Back, RJ., Petre, I., de Vink, E. (eds) Transactions on Computational Systems Biology XIII. Lecture Notes in Computer Science(), vol 6575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19748-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19748-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19747-5

  • Online ISBN: 978-3-642-19748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics