Abstract
In this chapter, we present an approach for recommendation of learning materials to students in an e-learning environment. Our aim is to increase the current system’s personalization capabilities for students in different scenarios making use of recommendation techniques. The recommendation is produced considering learning materials’ properties, student’s profile and the context of use. In addition, the process of recommendation is improved through students´ collaboration. In the context of this work, a learning material is a link to a Web page or a paper available on the Web and previously stored in a private repository. The process of collaboration occurs during student’s evaluations of the recommendations. These student´s evaluations are used by the system to produce new recommendations for other students. The main features of the recommendations aspects are described and some examples are also used to discuss and illustrate how to provide this personalization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Multidimensional recommender systems: A data warehousing approach. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol. 2232, pp. 180–192. Springer, Heidelberg (2001)
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng. 17(6), 734–749 (2005), doi: http://dx.doi.org/10.1109/TKDE.2005.99
Agrahri, A.K., Manickam, D.A.T., Riedl, J.: Can people collaborate to improve the relevance of search results? In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 283–286. ACM, New York (2008), http://doi.acm.org/10.1145/1454008.1454052
Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997), http://doi.acm.org/10.1145/245108.245124
Bizer, C.: Quality-Driven Information Filtering. In: The Context of Web-Based Information Systems. VDM Verlag, Saarbrücken (2007)
Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002), doi: http://doi.acm.org/10.1145/792550.792552
Brusilovsky, P., Peylo, C.: Adaptive and intelligent Web-based educational systems. International Journal of Artificial Intelligence in Education 13(2), 159–172 (2003)
Drachsler, H., Hummel, H., Koper, R.: Recommendations for learners are different: Applying memory-based recommender system techniques to lifelong learning. In: Proceedings of the EC-TEL Conference, Crete, Greece (2007)
Eyharabide, V., Gasparini, I., Schiaffino, S.N., Pimenta, M.S., Amandi, A.: Personalized e-learning environments: Considering students’ contexts. Education and Technology for a Better World 302, 48–57 (2009)
Felder, R.: Learning and Teaching Styles in Engineering Education. Journal of Engineering Education 78(7), 674–681 (1988)
Gheller, L.F.M., Pimenta, M.S.: An aditional user interface layer for search mechanisms (uma camada de interfaces adicional para mecanismos de busca). In: S.B. de Computao SBC (ed.) Proceedings of V Symposium on Human Factors in Computer Systems (IHC 2002), vol. 1, pp. 366–370 (2002) (in Portuguese)
Glover, E.J., Lawrence, S., Gordon, M.D., Birmingham, W.P., Giles, C.L.: Web search—your way. Commun. ACM 44(12), 97–102 (2001), doi: http://doi.acm.org/10.1145/501317.501319
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992), doi: http://doi.acm.org/10.1145/138859.138867
Herlocker, J.L., Konstan, J.A.: Content-independent task-focused recommendation. IEEE Internet Computing 5(6), 40–47 (2001), doi: http://dx.doi.org/10.1109/4236.968830
Knight, S., Burn, J.: Developing a Framework for Assessing Information Quality on theWorld Wide Web. Informing Science: International Journal of an Emerging Transdiscipline 8, 159–172 (2005)
Kohlschütter, C., Nejdl, W.: A densitometric approach to web page segmentation. In: CIKM 2008: Proceeding of the 17th ACM Conference on Information and Knowledge Management, pp. 1173–1182. ACM, New York (2008), doi: http://doi.acm.org/10.1145/1458082.1458237
Lee, T., Chun, J., Shim, J., Lee, S.G.: An ontology-based product recommender system for b2b marketplaces. Int. J. Electron. Commerce 11(2), 125–155 (2006), doi: http://dx.doi.org/10.2753/JEC1086-4415110206
Loh, L., Lichtnow, D., Kampff, A.C., de Oiveira, J.P.M.: Recommendation of complementary material during chat discussions. Knowledge Management & E-Learning 2(4) (2010) (to be appear)
Loh, S., Garin, R.S., Lichtnow, D., Borges, T., Rodrigues, R., Simões, G., Amaral, L., Primo, T.: Analyzing web chat messages for recommending items from a digital library. In: ICEIS, vol. (4), pp. 41–48 (2004)
Martins, B., Silva, M.J.: Language identification in web pages. In: SAC 2005: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 764–768. ACM, New York (2005), doi: http://doi.acm.org/10.1145/1066677.1066852
Martins, T., Ghiraldelo, C., Nunes, M., Oliveira Jr, O.: Readability formulas applied to textbooks in brazilian portuguese. Notas do ICMSC-USP, Série Computação 28, 11 (1996)
Mcnee, S.M., Konstan, J.A. (Adviser): Meeting user information needs in recommender systems. Ph.D. thesis, University of Minnesota, Minneapolis, MN, USA (2006)
McNee, S.M., Kapoor, N., Konstan, J.A.: Don’t look stupid: avoiding pitfalls when recommending research papers. In: CSCW 2006: Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, pp. 171–180. ACM, New York (2006), doi: http://doi.acm.org/10.1145/1180875.1180903
Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004), doi: http://doi.acm.org/10.1145/963770.963773
de Oliveira, J.P.M., de Lima, J.V., Gasparini, I., Pimenta, M.S., Brunetto, M.A.C., Proença Jr., M., Faggion, R.: Adaptive multimedia content delivery in adaptweb. In: XIII Taller Internacional de Software Educativo TISE, vol. 4, pp. 23–39 (2008)
Olsina, L., Rossi, G.: Measuring web application quality with webqem. IEEE MultiMedia 9(4), 20–29 (2002), doi: http://dx.doi.org/10.1109/MMUL.2002.1041945
Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45(4), 211–218 (2002), doi: http://doi.acm.org/10.1145/505248.506010
Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997), doi: http://doi.acm.org/10.1145/245108.245121
Santos, O.C.: A recommender system to provide adaptive and inclusive standard-based support along the e-learning life cycle. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 319–322. ACM, New York (2008), doi: http://doi.acm.org/10.1145/1454008.1454062
Schickel-Zuber, V., Faltings, B.: Inferring user’s preferences using ontologies. In: AAAI 2006: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 1413–1418. AAAI Press, Menlo Park (2006)
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: CHI 1995: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1995), http://doi.acm.org/10.1145/223904.223931
Tang, T., McCalla, G.: Evaluating a smart recommender for an evolving e-learning system: A simulation-based study. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), vol. 3060, pp. 439–443. Springer, Heidelberg (2004)
W3C: Complete list of web accessibility evaluation tools WAI (Web Accessibility Initiative) (2010), http://www.w3.org/WAI/RC/tools/complete
W3C: Web Content Accessibility Guidelines 1.0 (1999), http://www.w3.org/TR/WAI-WEBCONTENT
Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–33 (1996)
Bry, F., Kraus, M.: Adaptive hypermedia made simple with HTML/XML style sheet selectors. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, p. 472. Springer, Heidelberg (2004)
Warpechowski, M., Souto, M., de Oliveira, J.P.M.: Techniques for metadata retrieval of learning objects. In: SW-EL International Workshop on Applications of Semantic Web Technologies for E-Learning, with AH 2006. Citeseer, Dublin (2006)
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW 2005: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM, New York (2005), doi: http://doi.acm.org/10.1145/1060745.1060754
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lichtnow, D., Gasparini, I., Bouzeghoub, A., de Oliveira, J.P.M., Pimenta, M.S. (2011). Recommendation of Learning Material through Students´ Collaboration and User Modeling in an Adaptive E-Learning Environment. In: Daradoumis, T., Caballé, S., Juan, A.A., Xhafa, F. (eds) Technology-Enhanced Systems and Tools for Collaborative Learning Scaffolding. Studies in Computational Intelligence, vol 350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19814-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-19814-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19813-7
Online ISBN: 978-3-642-19814-4
eBook Packages: EngineeringEngineering (R0)