Skip to main content

A Decision Procedure for Bisimilarity of Generalized Regular Expressions

  • Conference paper
Formal Methods: Foundations and Applications (SBMF 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6527))

Included in the following conference series:

  • 409 Accesses

Abstract

A notion of generalized regular expressions for a large class of systems modeled as coalgebras, and an analogue of Kleene’s theorem and Kleene algebra, were recently proposed by a subset of the authors of this paper. Examples of the systems covered include infinite streams, deterministic automata and Mealy machines. In this paper, we present a novel algorithm and a tool to decide whether two expressions are bisimilar or not. The procedure is implemented in the automatic theorem prover CIRC, by reducing coinduction to an entailment relation between an algebraic specification and an appropriate set of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: An algebra for Kripke polynomial coalgebras. In: LICS, pp. 49–58. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  2. Bonsangue, M., Rutten, J., Silva, A.: A Kleene theorem for polynomial coalgebras. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 122–136. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  4. Goguen, J., Lin, K., Rosu, G.: Circular coinductive rewriting. In: ASE 2000: Proceedings of the 15th IEEE International Conference on Automated Software Engineering, Washington, DC, USA, 2000, pp. 123–132. IEEE Computer Society, Los Alamitos (2000)

    Chapter  Google Scholar 

  5. Goguen, J.A.: Order-sorted algebra i: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science 105, 217–273 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goriac, E.-I., Lucanu, D., Roşu, G.: Automating Coinduction with Case Analysis. Technical Report TR 10-05, “Al.I.Cuza” University of Iaşi, Faculty of Computer Science (2010), http://www.infoiasi.ro/~tr/tr.pl.cgi

  7. Jacobs, B.: Introduction to coalgebra. towards mathematics of states and observations (2005)

    Google Scholar 

  8. Kleene, S.: Representation of events in nerve nets and finite automata. Automata Studies, 3–42 (1956)

    Google Scholar 

  9. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. In: LICS, pp. 214–225. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  10. Kozen, D.: Myhill-nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Roşu, G., Lucanu, D.: Circular Coinduction – A Proof Theoretical Foundation. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–144. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J. ACM 13(1), 158–169 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Silva, A., Bonsangue, M.M., Rutten, J.J.M.M.: Non-deterministic kleene coalgebras. Logical Methods in Computer Science 6(3) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonsangue, M., Caltais, G., Goriac, EI., Lucanu, D., Rutten, J., Silva, A. (2011). A Decision Procedure for Bisimilarity of Generalized Regular Expressions. In: Davies, J., Silva, L., Simao, A. (eds) Formal Methods: Foundations and Applications. SBMF 2010. Lecture Notes in Computer Science, vol 6527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19829-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19829-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19828-1

  • Online ISBN: 978-3-642-19829-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics