Abstract
In this article, based on our previous work CB-RNSA, we proposed an improved algorithm ICB-RNSA: using Principal Component Analysis (PCA) method to reduce data dimension in the data pre-treatment process; the distances between antigens are calculated by fractional norm distance to increase the detection discriminations. The experiment result shows that the efficiency and detection ability of ICB-RNSA are superior to CB-RNSA and other traditional negative selection algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 202–212. IEEE Press, Washington (1994)
Gonzalez, F., Dasgupta, D.: Anomaly detection using real-valued negative selection. Genetic Programming and Evolvable Machine 4, 383–403 (2003)
Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Proceedings Genetic and Evolutionary Computation Conference (GECCO), pp. 287–298. IEEE Press, Berlin (2004)
Stibor, T., Mohr, P., Timmis, J.: Is negative selection appropriate for anomaly detection? In: Proceedings Genetic and Evolutionary Computation Conference (GECCO), pp. 321–328. ACM Press, New York (2005)
Li, T.: Computer immunology. Publishing House of Electronics Industry, Beijing (2004)
Chen, W., Li, T.: A negative selection algorithm based on hierarchical clustering of self set. In: Proceedings of CNCE, pp. 50–53. IEEE Press, Qingdao (2010)
Stibor, T., Timmis, J., Eckert, C.: On the use of hyperspheres in artificial immune systems as antibody recognition regions. LNCS, vol. 41, pp. 215–228 (2006)
Stibor, T., Timmis, J., Eckert, C.: A comparative study of real-valued negative selection to statistical anomaly detection techniques. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 262–275. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, W., Li, T., Qin, J., Zhao, H. (2011). A New Cluster Based Real Negative Selection Algorithm. In: Qi, L. (eds) Information and Automation. ISIA 2010. Communications in Computer and Information Science, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19853-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-19853-3_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19852-6
Online ISBN: 978-3-642-19853-3
eBook Packages: Computer ScienceComputer Science (R0)