Skip to main content

JDEL: Differential Evolution with Local Search Mechanism for High-Dimensional Optimization Problems

  • Conference paper
Information and Automation (ISIA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 86))

Included in the following conference series:

Abstract

JDE, proposed by J. Brest and et al. is an efficient variant of differential evolution algorithm. JDE algorithm is focused on global search ability. However, its local search ability also need further improvement. Therefore a novel variant of JDE is proposed, which combines JDE and a local search operator simplex crossover operator aiming to improve the local search ability of JDE. The experimental results show that the novel hybrid algorithm improves the performance of JDE in term of precision and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Storn, R., Price, K.V., Lampinen, J.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Ošmera, P. (ed.) Proc. of MENDEL 2000, 6th International Mendel Conference on Soft Computing, Brno, Czech Republic, June 7-9, pp. 76–83 (2000)

    Google Scholar 

  3. Brest, J., Greiner, S., BoÅ¡ković, B., Mernik, M., Žumer, V.: Self-adapting Control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  4. Gamperle, R., Muller, S.D., Koumoutsakos, A.: Parameter study for differential evolution. In: WSEAS NNA-FSFS-EC 2002, Interlaken, Switzerland, February 11-15 (2002)

    Google Scholar 

  5. Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Matousek, D., Osmera, P. (eds.) Proc. of MENDEL 2003, 9th International Conference on Soft Computing, Brno, Czech Republic, pp. 41–46 (June 2003)

    Google Scholar 

  6. Storn, R., Price, K.: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimiz. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Storn, R., Price, K.: Differential Evolution—A Simple and efficient adaptive scheme for global optimization over continuous spaces, Berkeley, CA, Tech. Rep. TR-95-012 (1995), citeseer.ist.psu.edu/article/storn95differential.html

  8. Yong, W., Zi Xing, C., Guan Qi, G., Yu Ren, Z.: Multi-objective optimization and hybrid evolutionary algorithm to solve constrained optimization problems. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 37(3), 560–575 (2007)

    Article  Google Scholar 

  9. Xin, Y., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transaction on Evolutionary Computation 3, 82–102 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, X., Shi, L., Chen, R. (2011). JDEL: Differential Evolution with Local Search Mechanism for High-Dimensional Optimization Problems. In: Qi, L. (eds) Information and Automation. ISIA 2010. Communications in Computer and Information Science, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19853-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19853-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19852-6

  • Online ISBN: 978-3-642-19853-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics