Skip to main content

Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6576))

Included in the following conference series:

Abstract

The simultaneous optimisation of four or more conflicting objectives is now recognised as a challenge for evolutionary algorithms seeking to obtain full representations of trade-off surfaces for the purposes of a posteriori decision-making. Whilst there is evidence that some approaches can outperform both random search and standard Pareto-based methods, best-in-class algorithms have yet to be identified. We consider the concept of co-evolving a population of decision-maker preferences as a basis for determining the fitness of competing candidate solutions. The concept is realised using an existing co-evolutionary approach based on goal vectors. We compare this approach and a variant to three realistic alternatives, within a common optimiser framework. The empirical analysis follows current best practice in the field. As the number of objectives is increased, the preference-driven co-evolutionary approaches tend to outperform the alternatives, according to the hypervolume indicator, and so make a strong claim for further attention in many-objective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 231–240. Springer, Heidelberg (1997)

    Google Scholar 

  2. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174–188 (2003)

    Article  Google Scholar 

  3. Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E.: On handling a large number of objectives a posteriori and during optimization. In: Knowles, J., Corne, D., Deb, K. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 377–403. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: Some nondominated points are better than others. In: Proceedings of GECCO 2007, pp. 773–780 (2007)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 1, pp. 825–830 (2002)

    Google Scholar 

  8. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms made easy: Selection, sharing and mating restriction. In: Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 42–52 (1995)

    Google Scholar 

  9. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms — part I: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  11. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation, pp. 1157–1163 (2006)

    Google Scholar 

  12. Goldberg, D.: The race, the hurdle and the sweet spot. In: Bentley, P. (ed.) Evolutionary Design by Computers, pp. 105–118. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  13. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  14. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  15. Hughes, E.J.: MSOPS-II: A general-purpose many-objective optimiser. In: Proceedings of the 2007 Congress on Evolutionary Computation, pp. 3944–3951 (2007)

    Google Scholar 

  16. Hughes, E.J.: Fitness assignment methods for many-objective problems. In: Knowles, J., Corne, D., Deb, K. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 307–329. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: Proceedings of the 2008 Congress on Evolutionary Computation, pp. 2419–2426 (2008)

    Google Scholar 

  18. Kleeman, M.P., Lamont, G.B.: Coevolutionary multi-objective EAs: The next frontier? In: Proceedings of the 2006 Congress on Evolutionary Computation, pp. 1726–1735 (2006)

    Google Scholar 

  19. Lohn, J.D., Kraus, W.F., Haith, G.L.: Comparing a coevolutionary genetic algorithm for multiobjective optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1157–1162 (2002)

    Google Scholar 

  20. Manly, B.F.J.: Randomization and Monte Carlo Methods in Biology. Chapman and Hall, Boca Raton (1991)

    Book  MATH  Google Scholar 

  21. Purshouse, R.C., Fleming, P.J.: An adaptive divide-and-conquer methodology for evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 133–147. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Purshouse, R.C., Fleming, P.J.: Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784 (2007)

    Article  Google Scholar 

  24. Rachmawati, L., Srinivasan, D.: Preference incorporation in multi-objective evolutionary algorithms: A survey. In: Proceedings of the 2006 Congress on Evolutionary Computation, pp. 962–968 (2006)

    Google Scholar 

  25. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  27. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Purshouse, R.C., Jalbă, C., Fleming, P.J. (2011). Preference-Driven Co-evolutionary Algorithms Show Promise for Many-Objective Optimisation. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics