Abstract
Cultural Algorithms (CAs) are one of the metaheuristics which can be adapted in order to work in multi-objectives optimization environments. On the other hand, Bi-Objective Uncapacitated Facility Location Problem (BOUFLP) and particularly Uncapacitated Facility Location Problem (UFLP) are well know problems in literature. However, only few articles have applied evolutionary multi-objective (EMO) algorithms to these problems and articles presenting CAs applied to the BOUFLP have not been found. In this article we presents a Bi-Objective Cultural Algorithm (BOCA) which was applied to the Bi-Objective Uncapacitated Facility Location Problem (BOUFLP) and it obtain an important improvement in comparison with other well-know EMO algorithms such as PAES and NSGA-II. The considered criteria were cost minimization and coverage maximization. The different solutions obtained with the CA were compared using an hypervolume S metric.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Knowles, J., Corne, D.: On Metrics for Comparing Nondominated Sets. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 711–716 (2002)
Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Annals of Operations Research 147(1), 109–141 (2006)
Guo, Y.-n., Cheng, J., Cao, Y.-y., Lin, Y.: A novel multi-population cultural algorithm adopting knowledge migration. Soft Computing - A Fusion of Foundations, Methodologies and Applications. Springer, Heidelberg (2010) (in press)
Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming, pp. 131–139. World Scienfific Publishing, Singapore (1994)
Maravall, D., de Lope, J.: Multi-objective dynamic optimization with genetic algorithms for automatic parking. In: Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 11(3), pp. 249–257 (2007)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, pp. 849–858 (2000)
Carrano, E.G., Takahashi, R.H.C., Fonseca, C.M., Neto, O.M.: Bi-objective Combined Facility Location and Network Design. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 486–500. Springer, Heidelberg (2007)
Farahania, R.Z., SteadieSeifib, M., Asgaria, N.: Multiple criteria facility location problems, A survey. Applied Mathematical Modelling 34(7), 1689–1709 (2010)
Borgulya, I.: An algorithm for the capacitated vehicle routing problem with route balancing. Central European Journal of Operations Research 16(4), 331–343 (2008)
Daskin, M.: Network and discrete location, Models: algorithms, and applications. Wiley Interscience, New York
Simchi-Levi, D., Chen, X., Bramel, J.: The logic of logistic. Springer, New York
Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, New York (2002)
Revelle, C.S., Laporte, G.: The Plant Location Problem: New Models and Research Prospects. Operations Research 44(6), 864–874 (1996)
Bhattacharya, R., Bandyopadhyay, S.: Solving conflicting bi-objective facility location problem by NSGA II evolutionary algorithm. The International Journal of Advanced Manufacturing Technology (2010) (in press)
Gu, W., Wu, Y.: Application of Multi-objective Cultural Algorithm in Water Resources Optimization. Power and Energy Engineering Conference (APPEEC), 1–4 (2010)
Coello, C.A.C., Becerra, R.L.: Evolutionary Multiobjective Optimization using a Cultural Algorithm. In: IEEE Swarm Intelligence Symposium Proceedings, pp. 6–13 (2003)
Farhang-Mehr, A., Azarm, S.: Minimal sets of quality metrics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 405–417. Springer, Heidelberg (2003)
Hansen, M.P., Jaszkiewicz, A.: Evaluating the Quality of Approximations to the Non-dominatedSet. Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling, Technical University of Denmark (1998)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization, Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms Empirical Results. Evolutionary Computation 8, 173–195 (2000)
Reynolds, R.G.: Cultural algorithms: Theory and applications. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 367–377. McGraw-Hill, New York (1999)
Kaliszewski, I.: Soft Computing for Complex Multiple Criteria Decision Making. Springer, Berlin (2006)
Becerra, R.L., Coello, C.A.C.: A Cultural Algorithm with Differential Evolution to Solve Constrained Optimization Problems. In: IBERAMIA, pp. 881–890 (2004)
Soza, C., Becerra, R.L., Riff, M.-C., Coello, C.A.C.: A Cultural Algorithm with Operator Parameters Control for Solving Timetabling Problems. In: IFSA, pp. 810–819
Hoefer, M.: UflLib, Benchmark Instances for the Uncapacitated Facility Location Problem, http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/
Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)
Coello, C.A.C., Dhaenens, C., Jourdan, L. (eds.): Advances in Multi-Objective Nature Inspired Computing. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cabrera, G., Rubio, J.M., Díaz, D., Fernández, B., Cubillos, C., Soto, R. (2011). A Cultural Algorithm Applied in a Bi-Objective Uncapacitated Facility Location Problem. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-19893-9_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19892-2
Online ISBN: 978-3-642-19893-9
eBook Packages: Computer ScienceComputer Science (R0)