Skip to main content

A Cultural Algorithm Applied in a Bi-Objective Uncapacitated Facility Location Problem

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2011)

Abstract

Cultural Algorithms (CAs) are one of the metaheuristics which can be adapted in order to work in multi-objectives optimization environments. On the other hand, Bi-Objective Uncapacitated Facility Location Problem (BOUFLP) and particularly Uncapacitated Facility Location Problem (UFLP) are well know problems in literature. However, only few articles have applied evolutionary multi-objective (EMO) algorithms to these problems and articles presenting CAs applied to the BOUFLP have not been found. In this article we presents a Bi-Objective Cultural Algorithm (BOCA) which was applied to the Bi-Objective Uncapacitated Facility Location Problem (BOUFLP) and it obtain an important improvement in comparison with other well-know EMO algorithms such as PAES and NSGA-II. The considered criteria were cost minimization and coverage maximization. The different solutions obtained with the CA were compared using an hypervolume S metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knowles, J., Corne, D.: On Metrics for Comparing Nondominated Sets. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 711–716 (2002)

    Google Scholar 

  2. Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Annals of Operations Research 147(1), 109–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo, Y.-n., Cheng, J., Cao, Y.-y., Lin, Y.: A novel multi-population cultural algorithm adopting knowledge migration. Soft Computing - A Fusion of Foundations, Methodologies and Applications. Springer, Heidelberg (2010) (in press)

    Google Scholar 

  4. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming, pp. 131–139. World Scienfific Publishing, Singapore (1994)

    Google Scholar 

  5. Maravall, D., de Lope, J.: Multi-objective dynamic optimization with genetic algorithms for automatic parking. In: Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 11(3), pp. 249–257 (2007)

    Google Scholar 

  6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, pp. 849–858 (2000)

    Google Scholar 

  7. Carrano, E.G., Takahashi, R.H.C., Fonseca, C.M., Neto, O.M.: Bi-objective Combined Facility Location and Network Design. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 486–500. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Farahania, R.Z., SteadieSeifib, M., Asgaria, N.: Multiple criteria facility location problems, A survey. Applied Mathematical Modelling 34(7), 1689–1709 (2010)

    Article  MathSciNet  Google Scholar 

  9. Borgulya, I.: An algorithm for the capacitated vehicle routing problem with route balancing. Central European Journal of Operations Research 16(4), 331–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daskin, M.: Network and discrete location, Models: algorithms, and applications. Wiley Interscience, New York

    Google Scholar 

  11. Simchi-Levi, D., Chen, X., Bramel, J.: The logic of logistic. Springer, New York

    Google Scholar 

  12. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, New York (2002)

    MATH  Google Scholar 

  13. Revelle, C.S., Laporte, G.: The Plant Location Problem: New Models and Research Prospects. Operations Research 44(6), 864–874 (1996)

    Article  MATH  Google Scholar 

  14. Bhattacharya, R., Bandyopadhyay, S.: Solving conflicting bi-objective facility location problem by NSGA II evolutionary algorithm. The International Journal of Advanced Manufacturing Technology (2010) (in press)

    Google Scholar 

  15. Gu, W., Wu, Y.: Application of Multi-objective Cultural Algorithm in Water Resources Optimization. Power and Energy Engineering Conference (APPEEC), 1–4 (2010)

    Google Scholar 

  16. Coello, C.A.C., Becerra, R.L.: Evolutionary Multiobjective Optimization using a Cultural Algorithm. In: IEEE Swarm Intelligence Symposium Proceedings, pp. 6–13 (2003)

    Google Scholar 

  17. Farhang-Mehr, A., Azarm, S.: Minimal sets of quality metrics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 405–417. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Hansen, M.P., Jaszkiewicz, A.: Evaluating the Quality of Approximations to the Non-dominatedSet. Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling, Technical University of Denmark (1998)

    Google Scholar 

  19. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization, Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)

    Google Scholar 

  20. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms Empirical Results. Evolutionary Computation 8, 173–195 (2000)

    Article  Google Scholar 

  21. Reynolds, R.G.: Cultural algorithms: Theory and applications. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 367–377. McGraw-Hill, New York (1999)

    Google Scholar 

  22. Kaliszewski, I.: Soft Computing for Complex Multiple Criteria Decision Making. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Becerra, R.L., Coello, C.A.C.: A Cultural Algorithm with Differential Evolution to Solve Constrained Optimization Problems. In: IBERAMIA, pp. 881–890 (2004)

    Google Scholar 

  24. Soza, C., Becerra, R.L., Riff, M.-C., Coello, C.A.C.: A Cultural Algorithm with Operator Parameters Control for Solving Timetabling Problems. In: IFSA, pp. 810–819

    Google Scholar 

  25. Hoefer, M.: UflLib, Benchmark Instances for the Uncapacitated Facility Location Problem, http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

  26. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  27. Coello, C.A.C., Dhaenens, C., Jourdan, L. (eds.): Advances in Multi-Objective Nature Inspired Computing. Springer, Heidelberg (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cabrera, G., Rubio, J.M., Díaz, D., Fernández, B., Cubillos, C., Soto, R. (2011). A Cultural Algorithm Applied in a Bi-Objective Uncapacitated Facility Location Problem. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds) Evolutionary Multi-Criterion Optimization. EMO 2011. Lecture Notes in Computer Science, vol 6576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19893-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19893-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19892-2

  • Online ISBN: 978-3-642-19893-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics