Skip to main content

Privacy Preserving Protocols for Eigenvector Computation

  • Conference paper
Privacy and Security Issues in Data Mining and Machine Learning (PSDML 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6549))

Abstract

In this paper, we present a protocol for computing the principal eigenvector of a collection of data matrices belonging to multiple semi-honest parties with privacy constraints. Our proposed protocol is based on secure multi-party computation with a semi-honest arbitrator who deals with data encrypted by the other parties using an additive homomorphic cryptosystem. We augment the protocol with randomization and oblivious transfer to make it difficult for any party to estimate properties of the data belonging to other parties from the intermediate steps. The previous approaches towards this problem were based on expensive QR decomposition of correlation matrices, we present an efficient algorithm using the power iteration method. We present an analysis of the correctness, security, and efficiency of protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy (2002)

    Google Scholar 

  2. Evfimievski, A.V.: Randomization in privacy-preserving data mining. SIGKDD Explorations 4(2), 43–48 (2002)

    Article  Google Scholar 

  3. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)

    Article  MATH  Google Scholar 

  4. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  5. Han, S., Ng, W.K., Yu, P.S.: Privacy-preserving singular value decomposition. In: IEEE International Conference on Data Mining, pp. 1267–1270. IEEE, Los Alamitos (2009)

    Google Scholar 

  6. Massy, W.F.: Principal component analysis in exploratory data research. Journal of the American Statistical Association 60, 234–256 (1965)

    Article  Google Scholar 

  7. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford University, Stanford, CA (1998)

    Google Scholar 

  8. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 2nd edn. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

  10. Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard University (1981)

    Google Scholar 

  11. Sewell, G.: Computational Methods of Linear Algebra, 2nd edn. Wiley-Interscience, Hoboken (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pathak, M., Raj, B. (2011). Privacy Preserving Protocols for Eigenvector Computation. In: Dimitrakakis, C., Gkoulalas-Divanis, A., Mitrokotsa, A., Verykios, V.S., Saygin, Y. (eds) Privacy and Security Issues in Data Mining and Machine Learning. PSDML 2010. Lecture Notes in Computer Science(), vol 6549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19896-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19896-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19895-3

  • Online ISBN: 978-3-642-19896-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics