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Abstract. As increasing amounts of sensitive personal information is
aggregated into data repositories, it has become important to develop
mechanisms for processing the data without revealing information about
individual data instances. The differential privacy model provides a frame-
work for the development and theoretical analysis of such mechanisms.
In this paper, we propose an algorithm for learning a discriminatively
trained multi-class Gaussian classifier that satisfies differential privacy
using a large margin loss function with a perturbed regularization term.
We present a theoretical upper bound on the excess risk of the classifier
introduced by the perturbation.

1 Introduction

In recent years, vast amounts of personal data is being aggregated in the form of
medical, financial records, social networks, and government census data. As these
often contain sensitive information, a database curator interested in releasing a
function such as a statistic evaluated over the data is faced with the prospect
that it may lead to a breach of privacy of the individuals who contributed to the
database. It is therefore important to develop techniques for retrieving desired
information from a dataset without revealing any information about individual
data instances. Differential privacy [1] is a theoretical model proposed to ad-
dress this issue. A query mechanism evaluated over a dataset is said to satisfy
differential privacy if it is likely to produce the same output on a dataset dif-
fering by at most one element. This implies that an adversary having complete
knowledge of all data instances but one along with a priori information about
the remaining instance, is not likely to be able to infer any more information
about the remaining instance by observing the output of the mechanism.

One of the most common applications for such large data sets such as the
ones mentioned above is for training classifiers that can be used to categorize new
data. If the training data contains private data instances, an adversary should
not be able to learn anything about the individual training dataset instances by
analyzing the output of the classifier. Recently, mechanisms for learning differ-
entially private classifiers have been proposed for logistic regression [2]. In this
method, the objective function which is minimized by the classification algorithm
is modified by adding a linear perturbation term. Compared to the original clas-
sifier, there is an additional error introduced by the perturbation term in the
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differentially private classifier. It is important to have an upper bound on this
error as a cost of preserving privacy.

The work mentioned above is largely restricted to binary classification, while
multi-class classifiers are more useful in many practical situations. In this pa-
per, we propose an algorithm for learning multi-class Gaussian classifiers which
satisfies differential privacy. Gaussian classifiers that model the distributions of
individual classes as being generated from Gaussian distribution or a mixture
of Gaussian distributions [3] are commonly used as multi-class classifiers. We
use a large margin discriminative algorithm for training the classifier introduced
by Sha and Saul [4]. To ensure that the learned multi-class classifier preserves
differential privacy, we modify the objective function by introducing a perturbed
regularization term.

2 Differential Privacy

In recent years, the differential privacy model proposed by Dwork, et al. [1] has
emerged as a robust standard for data privacy. It originated from the statistical
database model, where the dataset D is a collection of elements and a ran-
domized query mechanism M produces a response when performed on a given
dataset. Two datasets D and D′ differing by at most one element are said to be
adjacent. There are two proposed definitions for adjacent datasets one based on
symmetric difference – D′ containing of one entry less than D, and one based
on substitution – one entry of D′ differs in value from D. We use the substi-
tution definition of adjacency previously used by [5, 2], where the one entry of
the dataset D = {x1, . . . , xn−1, xn} is modified to result in an adjacent dataset
D′ = {x1, . . . , xn−1, x′n}. The query mechanism M is said to satisfy differential
privacy if the probability of M resulting in a solution S when performed on a
dataset D is very close to the probability of M resulting in the same solution S
when executed on an adjacent dataset D′. Assuming the query mechanism to be
a function M : D 7→ range(M) with a probability function P defined over the
space of M , differential privacy is formally defined as follows.

Definition 1. A randomized function M satisfies ε-differential privacy if for all
adjacent datasets D and D′ and for any S ∈ range(M),∣∣∣∣log

P (M(D) = S)

P (M(D′) = S)

∣∣∣∣ ≤ ε.
The value of the ε parameter, which is referred to as leakage, determines the
degree of privacy. As there is always a trade-off between privacy and utility, the
choice of ε is motivated by the requirements of the application.

In a machine learning setting, the query mechanism can be thought of as an
algorithm learning the classification, regression or density estimation rule which
is evaluated over the training dataset. The output of an algorithm satisfying dif-
ferential privacy is likely to be same when the value of any single dataset instance
is modified, and therefore, no additional information can be obtained about any
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individual training data instances with certainty by observing the output of the
learning algorithm, beyond what is already known to an adversary. Differential
privacy is a strong definition of privacy – it provides ad omnia guarantee as
opposed to most other models that provide ad hoc guarantees against specific
set of attacks and adversarial behaviors.

2.1 Related Work

The earlier work on differential privacy was related to functional approximations
for simple data mining tasks and data release mechanisms [6–9]. Although many
of these works have connection to machine learning problems, more recently the
design and analysis of machine learning algorithms satisfying differential pri-
vacy has been actively studied. Kasiviswanathan, et al. [5] present a framework
for converting a general agnostic PAC learning algorithm to an algorithm that
satisfies privacy constraints. Chaudhuri and Monteleoni [2] use the exponential
mechanism [10] to create a differentially private logistic regression classifier by
adding Laplace noise to the estimated parameters. They propose another dif-
ferentially private formulation which involves modifying the objective function
of the logistic regression classifier by adding a linear term scaled by Laplace
noise. The second formulation is advantageous because it is independent of the
classifier sensitivity which difficult to compute in general and it can be shown
that using a perturbed objective function introduces a lower error as compared
to the exponential mechanism.

However, the above mentioned differentially private classification algorithms
only address the problem of binary classification. Although it is possible to ex-
tend binary classification algorithms to multi-class using techniques like one-vs-
all, it is much more expensive to do so as compared to a naturally multi-class
classification algorithm. Jagannathan, et al. [11] present a differentially private
random decision tree learning algorithm which can be applied to multi-class
classification. Their approach involves perturbing leaf nodes using the sensitiv-
ity method, and they do not provide theoretical analysis of excess risk of the
perturbed classifier. In this paper, we propose a modification to the naturally
multi-class large margin Gaussian classification algorithm [4, 12].

3 Large Margin Gaussian Classifiers

We investigate the large margin multi-class classification algorithm introduced
by Sha and Saul [4]. The training dataset (x,y)1 contains n iid d-dimensional
training data instances xi ∈ Rd each with labels yi ∈ {1, . . . , C}. We consider
the setting where each class is modeled as a single Gaussian ellipsoid. Each class
ellipsoid is parametrized by the centroid µc ∈ Rd, the inverse covariance matrix
Ψc ∈ Rd×d, and a scalar offset θc ≥ 0. The decision rule is to assign an instance

1 Notation: vectors and matrices are denoted by boldface.
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xi to the class having smallest Mahalanobis distance [13] with the scalar offset
from xi to the centroid of that class.

yi = argmin
c

(xi − µc)TΨc(xi − µc) + θc. (1)

To simplify the notation, we expand (xi − µc)TΨc(xi − µc) and collect the
parameters for each class as the following (d+ 1)× (d+ 1) positive semidefinite
matrix

Φc =

[
Ψc −Ψcµc

−µTc Ψc µTc Ψcµc + θc

]
(2)

and also append a unit element to each d-dimensional vector xi. The decision
rule for a data instance xi simplifies to

yi = argmin
c

xTi Φcxi. (3)

The discriminative training procedure involves estimating a set of positive semidef-
inite matrices {Φ1, . . . ,ΦC} from the training data {(x1, y1), . . . , (xn, yn)} which
optimize the performance on the decision rule mentioned above. We apply the
large margin intuition that the optimal classifier must maximize the distance of
training data instances from the decision boundaries. This leads to the classi-
fication algorithm being robust to outliers with provably strong generalization
guarantees. Formally, we require that for each training data instance xi with
label yi, the distance from xi to the centroid of class yi is at least less than its
distance from centroids of all other classes by one.

∀c 6= yi : xTi Φcxi ≥ 1 + xTi Φyixi.

Analogous to support vector machines, the training algorithm is an optimization
problem minimizing the hinge loss denoted by [f ]+ = max(0, f), with a linear
penalty for incorrect classification. We use the sum of traces of inverse covariance
matrices for each classes as a regularization term. The regularization requires
that if we can learn a classifier which labels every training data instance correctly,
we choose the one with the lowest inverse covariance or highest covariance for
each class ellipsoid as this prevents the classifier from over-fitting. The parameter
λ controls the trade off between the loss function and the regularization.

J(Φ,x,y) =
∑
i

∑
c6=yi

[
1 + xTi (Φyi −Φc)xi

]
+

+ λ
∑
c

trace(Ψc). (4)

The inverse covariance matrix Ψc is contained in the upper left size d× d block
of the matrix Φc. We replace it with IΦΦcIΦ, where IΦ is the truncated size
(d+ 1)× (d+ 1) identity matrix with the last diagonal element IΦd+1,d+1

set to
zero. The optimization problem becomes

J(Φ,x,y) =
∑
i

∑
c6=yi

[
1 + xTi (Φyi −Φc)xi

]
+

+ λ
∑
c

trace(IΦΦcIΦ)

= L(Φ,x,y) +N(Φ). (5)



5

The hinge loss being non-differentiable is not very convenient for our analysis;
we replace it with a surrogate loss function called Huber loss lh [14] which has
similar characteristics to the hinge loss for small values of h.

`h(Φc, xi, yi) =


0 if xTi (Φc −Φyi)xi > h,
1
4h

[
h− xTi (Φyi −Φc)xi

]2
if |xTi (Φc −Φc)xi| ≤ h

−xTi (Φyi −Φc)xi if xTi (Φc −Φyi)xi < −h.
(6)

The objective function is convex function of positive semidefinite matrices Φc.
The optimization can be formulated as a semidefinite programming problem [15]
and be solved efficiently using interior point methods.

The large margin classification framework can be easily extended to model-
ing each class with a mixture of Gaussians. Similar to support vector machines,
when training with non-separable data, we can introduce slack parameters to
permit margin violations. These extensions do not change the basic characteris-
tics of the learning algorithm. The optimization problem remains to be a convex
semidefinite program with piecewise linear terms and is equally tractable. For
simplicity, we restrict our discussion to single Gaussians and hard margins in
this paper. As we shall see, it is easy to extend our proposed modifications to
these cases.

4 Differentially Private Large Margin Gaussian Classifiers

We modify the large margin Gaussian classification formulation to satisfy differ-
ential privacy by introducing a perturbation term in the objective function. As
we will see in Section 5.2, this modification leads to a classifier that preserves
differential privacy.

We generate the size (d+ 1)× (d+ 1) perturbation matrix b with density

P (b) ∝ exp
(
− ε

2
‖b‖

)
, (7)

where ‖ · ‖ is the Frobenius norm (element-wise `2 norm) and ε is the privacy
parameter. One method of generating such a b matrix is to sample the norm
‖b‖ from Γ

(
(d+ 1)2, 2ε

)
and the direction of b at random.

Our proposed learning algorithm minimizes the following objective function
Jp(Φ,x,y), where the subscript p denotes privacy.

Jp(Φ,x,y) = L(Φ,x,y) + λ
∑
c

trace(IΦΦcIΦ) +
∑
c

∑
ij

bijΦcij

= J(Φ,x,y) +
∑
c

∑
ij

bijΦcij . (8)

As the dimensionality of the perturbation matrix b is same as that of the clas-
sifier parameters Φc, the parameter space of Φ does not change after pertur-
bation. In other words, given two datasets (x,y) and (x′,y′), if Φp minimizes
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Jp(Φ,x,y), it is always possible to have Φp minimize Jp(Φ,x
′,y′). This is a

necessary condition for the classifier Φp satisfying differential privacy.
Furthermore, as the perturbation term is convex and positive semidefinite,

the perturbed objective function Jp(Φ,x,y) has the same properties as the un-
perturbed objective function J(Φ,x,y). Also, the perturbation does not intro-
duce any additional computational cost as compared to the original algorithm.

5 Theoretical Analysis

5.1 Proof of Differential Privacy

In the following theorem, we prove that the classifier minimizing the perturbed
optimization function Jp(Φ,x,y) satisfies ε-differential privacy. Given the dataset
(x,y) = {(x1, y1), . . . , (xn−1, yn−1), (xn, yn)}, the probability of learning the
classifier Φp is close to the the probability of learning the same classifier Φp

given its adjacent dataset (x′,y′) = {(x1, y1), . . . , (xn−1, yn−1), (x′n, y
′
n)} dif-

fering wlog on the nth instance. As we mentioned in the previous section, it
is always possible to find such a classifier Φp minimizing both Jp(Φ,x,y) and
Jp(Φ,x

′,y′) due to the perturbation matrix being in the same space as the
optimization parameters.

Our proof requires a strictly convex perturbed objective function resulting
in a unique solution Φp minimizing it. This in turn requires that the loss func-
tion L(Φ,x, y) is strictly convex and differentiable, and the regularization term
N(Φ) is convex. These seemingly strong constraints are satisfied by many com-
monly used classification algorithms such as logistic regression, support vector
machines, and our general perturbation technique can be extended to those algo-
rithms. In our proposed algorithm, the Huber loss is by definition a differentiable
function and the trace regularization term is convex and differentiable. Addition-
ally, we require that the difference in the gradients of L(Φ,x, y) calculated over
for two adjacent training datasets is bounded. We prove this property in Lemma
1 given in the appendix.

Theorem 1. For any two adjacent training datasets (x,y) and (x′,y′), the
classifier Φp minimizing the perturbed objective function Jp(Φ,x,y) satisfies
differential privacy. ∣∣∣∣log

P (Φp|x,y)

P (Φp|x′,y′)

∣∣∣∣ ≤ ε′,
where ε′ = ε + k for a constant factor k = log

(
1 + 2α

nλ + α2

n2λ2

)
with a constant

value of α.

Proof. As J(Φ,x,y) is convex and differentiable, there is a unique solution Φ∗

that minimizes it. As the perturbation term
∑
c

∑
ij bijΦcij is also convex and

differentiable, the perturbed objective function Jp(Φ,x,y) also has a unique
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solution Φp that minimizes it. Differentiating Jp(Φ,x,y) wrt Φc, we have

∂

∂Φc
Jp(Φ,x,y) =

∂

∂Φc
L(Φ,x,y) + λIΦ + b. (9)

Substituting the optimal Φp
c in the derivative gives us

λIΦ + b = − ∂

∂Φc
L(Φp,x,y).

This relation shows that two different values of b cannot result in the same
optimal Φp. As the perturbed objective function Jp(Φ,x,y) is also convex and
differentiable, there is a bijective map between the perturbation b and the unique
Φp minimizing Jp(Φ,x,y).

Let b1 and b2 be the two perturbations applied when training with the
adjacent datasets (x,y) and (x′,y′), respectively. Assuming that we obtain the
same optimal solution Φp while minimizing both Jp(Φ,x,y) with perturbation
b1 and Jp(Φ,x,y) with perturbation b2,

λIΦ + b1 = − ∂

∂Φc
L(Φp,x,y),

λIΦ + b2 = − ∂

∂Φc
L(Φp,x′,y′),

b1 − b2 =
∂

∂Φc
L(Φp,x′,y′)− ∂

∂Φc
L(Φp,x,y). (10)

We apply Lemma 1 after taking Frobenius norm on both sides.

‖b1 − b2‖ =

∥∥∥∥ ∂

∂Φc
L(Φp,x′,y′)− ∂

∂Φc
L(Φp,x,y)

∥∥∥∥
=

∥∥∥∥∥
n−1∑
i=1

∂

∂Φc
L(Φp,xi, yi) +

∂

∂Φc
L(Φp,x′n, y

′
n)

−
n−1∑
i=1

∂

∂Φc
L(Φp,xi, yi)−

∂

∂Φc
L(Φp,xn, yn)

∥∥∥∥∥
=

∥∥∥∥ ∂

∂Φc
L(Φp,x′n, y

′
n)− ∂

∂Φc
L(Φp,xn, yn)

∥∥∥∥ ≤ 2.

Using this property, we can calculate the ratio of densities of drawing the
perturbation matrices b1 and b2 as

P (b = b1)

P (b = b2)
=

1
surf(‖b1‖)‖b1‖d exp

[
− ε

2‖b1‖
]

1
surf(‖b2‖)‖b2‖d exp

[
− ε

2‖b2‖
] ,

where surf(‖b‖) is the surface area of the (d+ 1)-dimensional hypersphere with
radius ‖b‖. As surf(‖b‖) = surf(1)‖b‖d, where surf(1) is the area of the unit
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(d+ 1)-dimensional hypersphere, the ratio of the densities becomes

P (b = b1)

P (b = b2)
= exp

[ ε
2

(‖b2‖ − ‖b1‖)
]
≤ exp

[ ε
2
‖b2 − b1‖

]
≤ exp(ε). (11)

The ratio of the densities of learning Φp using the adjacent datasets (x,y)
and (x′,y′) is given by

P (Φp|x,y)

P (Φp|x′,y′)
=
P (b = b1)

P (b = b2)

|det(J(Φp → b1|x,y))|−1

|det(J(Φp → b2|x′,y′))|−1
, (12)

where J(Φp → b1|x,y) and J(Φp → b2|x′,y′) are the Jacobian matrices of the
bijective mappings from Φp to b1 and b2, respectively. Following a procedure
identical to Theorem 2 of [16] (omitted due to lack of space), it can be shown
that the ratio of Jacobian determinants is upper bounded by a constant factor

exp(k) = 1 + 2α
nλ + α2

n2λ2 for a constant value of α. Therefore, the ratio of the
densities of learning Φp using the adjacent datasets becomes

P (Φp|x,y)

P (Φp|x′,y′)
≤ exp(ε+ k) = exp(ε′). (13)

Similarly, we can show that the probability ratio is lower bounded by exp(−ε′),
which together with Equation (13) satisfies the definition of differential privacy.

ut

5.2 Analysis of Excess Error

In the remainder of this section, we denote the terms J(Φ,x,y) and L(Φ,x,y)
by J(Φ) and L(Φ) respectively for conciseness. To establish a bound on excess
risk of the classifier given by the proposed algorithm minimizing the perturbed
objective function, in Lemma 2 we show that the objective function J(Φ) satisfies
strong convexity. The objective function J(Φ) contains the loss function L(Φ)
computed over the training data (x,y) and the regularization term N(Φ) – this
is known as the regularized empirical risk of the classifier Φ. In the following
theorem, we establish a bound on the regularized empirical excess risk of the
differentially private classifier minimizing the perturbed objective function over
the classifier minimizing the unperturbed objective function.

Theorem 2. With probability at least 1−δ, the regularized empirical excess risk
of the classifier Φp minimizing the perturbed objective function Jp(Φ) over the
classifier Φ∗ minimizing the unperturbed objective function J(Φ) is bounded as

J(Φp) ≤ J(Φ∗) +
8(d+ 1)4C

ε2λ
log2

(
d

δ

)
.
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Proof. We use the definition of Jp(Φ) = J(Φ) +
∑
c

∑
ij bijΦcij and the opti-

mality of Φp, i.e., Jp(Φ
p) ≤ Jp(Φ∗).

J(Φp) +
∑
c

∑
ij

bijΦ
p
cij ≤ J(Φ∗) +

∑
c

∑
ij

bijΦ
∗
cij ,

J(Φp) ≤ J(Φ∗) +
∑
c

∑
ij

bij(Φ
∗
cij − Φ

p
cij). (14)

Using the strong convexity of J(Φ) as given by Lemma 2 and the optimality of
J(Φ∗), we have

J(Φ∗) ≤ J
(

Φp + Φ∗

2

)
≤ J(Φp) + J(Φ∗)

2
− λ

8

∑
c

‖Φ∗c −Φp
c‖2,

J(Φp)− J(Φ∗) ≥ λ

4

∑
c

‖Φ∗c −Φp
c‖2. (15)

Similarly, using the strong convexity of Jp(Φ) and the optimality of Jp(Φ
p),

Jp(Φ
p) ≤ Jp

(
Φp + Φ∗

2

)
≤ Jp(Φ

p) + Jp(Φ
∗)

2
− λ

8

∑
c

‖Φp
c −Φ∗c‖2,

Jp(Φ
∗)− Jp(Φp) ≥ λ

4

∑
c

‖Φp
c −Φ∗c‖2.

Substituting the definition Jp(Φ) = J(Φ) +
∑
c

∑
ij bijΦcij ,

J(Φ∗) +
∑
c

∑
ij

bijΦ
∗
cij − J(Φp)−

∑
c

∑
ij

bijΦ
p
cij ≥

λ

4

∑
c

‖Φ∗c −Φp
c‖2

∑
c

∑
ij

bij(Φ
∗
cij − Φ

p
cij)− (J(Φp)− J(Φ∗)) ≥ λ

4

∑
c

‖Φ∗c −Φp
c‖2.

Substituting the lower bound on J(Φp)− J(Φ∗) given by Equation (15),∑
c

∑
ij

bij(Φ
∗
cij − Φ

p
cij) ≥

λ

2

∑
c

‖Φ∗c −Φp
c‖2,∑

c

∑
ij

bij(Φ
∗
cij − Φ

p
cij)

2

≥ λ2

4

[∑
c

‖Φ∗c −Φp
c‖2
]2
. (16)

Using the Cauchy-Schwarz inequality, we have,∑
c

∑
ij

bij(Φ
∗
cij − Φ

p
cij)

2

≤ C‖b‖2
∑
c

‖Φ∗c −Φp
c‖2 (17)
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Combining this with Equation (16) gives us

C‖b‖2
∑
c

‖Φ∗c −Φp
c‖2 ≥

λ2

4

[∑
c

‖Φ∗c −Φp
c‖2
]2
,

∑
c

‖Φ∗c −Φp
c‖2 ≤

4C

λ2
‖b‖2. (18)

Combining this with Equation (17) gives us∑
c

∑
ij

bij(Φ
∗
cij − Φ

p
cij) ≤

2C

λ
‖b‖2.

We bound ‖b‖2 with probability at least 1− δ as given by Lemma 4.

∑
c

∑
ij

bij(Φ
∗
cij − Φ

p
cij) ≤

8(d+ 1)4C

ε2λ
log2

(
d

δ

)
. (19)

Substituting this in Equation (14) proves the theorem.
ut

The upper bound on the regularized empirical risk is in O(Cε2 ). The bound
increases for smaller values of ε which implies tighter privacy and therefore sug-
gests a trade off between privacy and utility.

The regularized empirical risk of a classifier is calculated over a given training
dataset. In practice, we are more interested in how the classifier will perform on
new test data which is assumed to be generated from the same source as the
training data. The expected value of the loss function computed over the data is
called the true risk L̃(Φ) = E[L(Φ)] of the classifier Φ. In the following theorem,
we establish a bound on the true excess risk of the differentially private classifier
minimizing the perturbed objective function and the classifier minimizing the
original objective function.

Theorem 3. With probability at least 1 − δ, the true excess risk of the classi-
fier Φp minimizing the perturbed objective function Jp(Φ) over the classifier Φ∗

minimizing the unperturbed objective function J(Φ) is bounded as

L̃(Φp) ≤ L̃(Φ∗) +
4
√
d(d+ 1)2C

ελ
log

(
d

δ

)
+

8(d+ 1)4C

ε2λ
log2

(
d

δ

)
+

16

λn

[
32 + log

(
1

δ

)]
.

Proof. Let the expected value of the regularized empirical risk be

J̃(Φ) = L̃(Φ) + λ
∑
c

trace(IΦΦcIΦ). (20)
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Let Φr be the classifier minimizing J̃(Φ), i.e., J̃(Φr) ≤ J̃(Φ∗).
Rearranging the terms, we have

J̃(Φp) = J̃(Φ∗) + [J̃(Φp)− J̃(Φr)] + [J̃(Φr)− J̃(Φ∗)]

≤ J̃(Φ∗) + [J̃(Φp)− J̃(Φr)].

Substituting the definition of J̃(Φ),

L̃(Φp) + λ
∑
c

trace(IΦΦp
cIΦ) ≤ L̃(Φ∗) + λ

∑
c

trace(IΦΦ∗cIΦ) + [J̃(Φp)− J̃(Φr)]

L̃(Φp) ≤ L̃(Φ∗) + λ
∑
c

trace[IΦ(Φ∗c −Φp
c)IΦ] + [J̃(Φp)− J̃(Φr)]. (21)

From Lemma 3 and Equation (18), we have,[∑
c

trace[IΦ(Φ∗c −Φp
c)IΦ]

]2
≤ dC

∑
c

‖Φc −Φ′c‖
2

≤ 4dC2

λ2
‖b‖2 =

16d(d+ 1)4C2

ε2λ2
log2

(
d

δ

)
.

Taking the square root,∑
c

trace[IΦ(Φ∗c −Φp
c)IΦ] ≤ 4

√
d(d+ 1)2C

ελ
log

(
d

δ

)
. (22)

Sridharan, et al. [17] present a bound on the true excess risk of any classifier
as an expression of the bound on the regularized empirical excess risk for that
classifier. With probability at least 1− δ,

J̃(Φp)− J̃(Φr) ≤ 2[J(Φp)− J(Φ∗)] +
16

λn

[
32 + log

(
1

δ

)]
.

Substituting the bound from Theorem 2,

J̃(Φp)− J̃(Φr) ≤ 8(d+ 1)4C

ε2λ
log2

(
d

δ

)
+

16

λn

[
32 + log

(
1

δ

)]
. (23)

Substituting the results from Equations (22) and (23) into Equation (21) proves
the theorem.

ut

Similar to the bound on the regularized empirical excess risk, the bound on
the true excess risk is also inversely proportional to ε reflecting the privacy-utility
trade-off. The bound is linear in the number of classes C, which is a consequence
of the multi-class classification. The classifier learned using a higher value of the
regularization parameter λ will have a higher covariance for each class ellip-
soid. This would also make the classifier less sensitive to the perturbation. This
intuition is confirmed by the fact that the true excess risk bound is inversely
proportional to λ.
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6 Conclusion

In this paper, we present a discriminatively trained Gaussian classification algo-
rithm that satisfies differential privacy. Our proposed technique involves adding
a perturbation term to the objective function. We prove that the proposed al-
gorithm satisfies differential privacy and establish a bound on the excess risk
of the classifier learned by the algorithm which is inversely proportional to the
data dimensionality which is directly proportional to the number of classes and
inversely proportional to the privacy parameter ε reflecting a trade-off between
privacy and utility.

In the future, we plan to extend this work along two main directions: extend-
ing our perturbation technique for a general class of learning algorithms and
applying results from theory of large margin classifiers to arrive at tighter excess
risk bounds for the differentially private large margin classifiers. Our intuition is
that compared to other classification algorithms, a large margin classifier should
be much more robust to perturbation. This would also give us insights into
designing low error inducing mechanisms for differentially private classifiers.
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Appendix

Lemma 1. Assuming all the data instances to lie within a unit `2 ball, the
difference in the derivative of Huber loss function L(Φ,x, y) calculated over two
data instances (xi, yi) and (x′i, y

′
i) is bounded.∥∥∥∥ ∂

∂Φc
L(Φ,xi, yi)−

∂

∂Φc
L(Φ,x′i, y

′
i)

∥∥∥∥ ≤ 2.

Proof. The derivative of the Huber loss function for the data instance xi with
label yi is

∂

∂Φc
L(Φ,xi, yi) =


0 if xTi (Φc −Φyi)xi > h,
1
2h [h− xTi (Φyi −Φc)xi]xix

T
i if |xTi (Φc −Φyi)xi| ≤ h,

xix
T
i if xTi (Φc −Φyi)xi < −h.

The data points lie in a `2 ball of radius 1, ∀i : ‖xi‖2 ≤ 1. Using linear algebra,
it is easy to show that the Frobenius norm of the matrix xix

T
i is same as the `2

norm of the vector xi, ‖xixTi ‖ = ‖xi‖2 ≤ 1.
As the term 1

2h [h−xTi (Φyi−Φc)xi] is at most one when |xTi (Φc−Φyi)xi| ≤ h,
the Frobenius norm of the derivative of the Huber loss function is at most one
in all cases,

∥∥∥ ∂
∂Φc

L(Φ,xi, yi)
∥∥∥ ≤ 1. Using a similar argument for data instance

x′i with label y′i, we have
∥∥∥ ∂
∂Φc

L(Φ,x′i, y
′
i)
∥∥∥ ≤ 1.

Finally, using the triangle inequality ‖a− b‖ = ‖a+ (−b)‖ ≤ ‖a‖+ ‖b‖,∥∥∥∥ ∂

∂Φc
L(Φ,xi, yi)−

∂

∂Φc
L(Φ,x′i, y

′
i)

∥∥∥∥
≤
∥∥∥∥ ∂

∂Φc
L(Φ,xi, yi)

∥∥∥∥+

∥∥∥∥ ∂

∂Φc
L(Φ,x′i, y

′
i)

∥∥∥∥ ≤ 2.
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ut

Lemma 2. The objective function J(Φ) is λ-strongly convex. For 0 ≤ α ≤ 1,

J (αΦ + (1− α)Φ′) ≤ αJ(Φ) + (1− α)J(Φ′)− λα(1− α)

2

∑
c

‖Φc −Φ′c‖
2
.

Proof. By definition, Huber loss is λ-strongly convex, i.e.

L (αΦ + (1− α)Φ′) ≤ αL(Φ) + (1− α)L(Φ′)− λα(1− α)

2
‖Φ−Φ′‖2 . (24)

where the Frobenius norm of the matrix set Φ−Φ′ is the sum of norms of the
component matrices Φc −Φ′c,

‖Φ−Φ′‖2 =
∑
c

‖Φc −Φ′c‖
2
. (25)

As the regularization term N(Φ) is linear,

N(αΦ + (1− α)Φ′) = λ
∑
c

trace(αIΦΦcIΦ + (1− α)IΦΦ′cIΦ) (26)

= αλ
∑
c

trace(IΦΦcIΦ) + (1− α)λ
∑
c

trace(IΦΦ′cIΦ)

= αN(Φ) + (1− α)N(Φ′).

The lemma follows directly from the definition J(Φ) = L(Φ) +N(Φ).
ut

Lemma 3.

1

dC

[∑
c

trace[IΦ(Φc −Φ′c)IΦ]

]2
≤
∑
c

‖Φc −Φ′c‖
2

Proof. Let Φc,i,j be the (i, j)th element of the size (d+1)×(d+1) matrix Φc−Φ′c.

By the definition of the Frobenius norm, and using the identity N
∑N
i=1 x

2
i ≥

(
∑N
i=1 xi)

2,

∑
c

‖Φc −Φ′c‖
2

=
∑
c

d+1∑
i=1

d+1∑
j=1

Φ2
c,i,j ≥

∑
c

d+1∑
i=1

Φ2
c,i,i ≥

∑
c

d∑
i=1

Φ2
c,i,i

≥ 1

dC

(∑
c

d∑
i=1

Φc,i,i

)2

=
1

dC

[∑
c

trace[IΦ(Φc −Φ′c)IΦ]

]2
.

ut

Lemma 4.

P

[
‖b‖ ≥ 2(d+ 1)2

ε
log

(
d

δ

)]
≤ δ.

Proof. Similar to the union bound argument used in Lemma 5 in [2].


