Abstract
Multiple sequence alignment is one of the most common tasks in Bioinformatics. However, there are not biologically accurate methods for performing sequence alignment. Genetic Algorithms are adaptive search methods which perform well in large and complex spaces, such as the ones present when aligning a set of sequences. Parallel Genetic Algorithms, not only increase the speed up of the search, but also improve its efficiency, presenting results that are better than those provided by the sum of several sequential Genetic Algorithms. Although these methods are often used to optimize a single objective, they can also be used in multidimensional domains, finding all possible tradeoffs among multiple conflicting objectives. Parallel AlineaGA is an evolutionary algorithm which makes use of a Parallel Genetic Algorithm for performing multiple sequence alignment. We present a multiple objective approach of Parallel AlineaGA that uses a Parallel Niched Pareto Genetic Algorithm. We compare the performance of both versions using eight BAliBASE datasets. We also measure up the quality of the obtained solutions with the ones achieved by T-Coffee and ClustalW2, allowing us to observe that our algorithm reaches for better solutions in the majority of the datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pal, S.K., Bandyopadhyay, S., et al.: Evolutionary computation in bioinformatics: A review. IEEE Transactions on Systems Man and Cybernetics Part C-Appl. and Rev. 36(5), 601–615 (2006)
Notredame, C.: Recent evolutions of multiple sequence alignment algorithms. PLoS Comput. Biol. 3(8), e123 (2007)
De Jong, K.: Learning with genetic algorithms: An overview. Mach. Learning 3(2-3), 121–138 (1988)
Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–52 (1999)
Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)
Shir, O.M., Back, T.: Niche radius adaptation in the CMA-ES niching algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 142–151. Springer, Heidelberg (2006)
Silva, F.J.M., Sánchez Pérez, J.M., et al.: Parallel AlineaGA: An Island Parallel Evolutionary Algorithm for Multiple Sequence Alignment. In: SoCPaR 2010 - International Conference on Soft Computing and Pattern Recognition, Cergy Pontoise, Paris, France, pp. 279–284. IEEE, Los Alamitos (2010)
Gropp, W., Lusk, E., et al.: Using MPI: portable parallel programming with the message passing interface (1999)
Horn, J., Nafpliotis, N., et al.: A niched Pareto genetic algorithm for multiobjective optimization. In: First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, pp. 82–87 (1994)
Thompson, J.D., Plewniak, F., et al.: BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs. Comput. Appl. Biosci. 15(1), 87–88 (1999)
Larkin, M.A., Blackshields, G., et al.: Clustal W and Clustal X version 2.0. Comput. Appl. Biosci. 23(21), 29–47 (2007)
Notredame, C., Higgins, D.G., et al.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1), 205–217 (2000)
Lassmann, T., Sonnhammer, E.L.L.: Quality assessment of multiple alignment programs. FEBS Letters 529(1), 126–130 (2002)
Gregor, D., Lumsdaine: A Design and implementation of a high-performance MPI for C# and the common language infrastructure. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, Salt Lake City, USA, pp. 133–142. ACM, New York (2008)
Dayhoff, M.O., Schwartz, R.M., et al.: A Model of Evolutionary Change in Proteins. In: Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, vol. 5, pp. 345–352 (1978)
Silva, F.M., Sánchez Pérez, J.M., et al.: AlineaGA - A Genetic Algorithm with Local Search Optimization for Multiple Sequence Alignment. Applied Intelligence, 1–9 (2009)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)
Chellapilla, K., Fogel, G.B.: Multiple sequence alignment using evolutionary programming. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, USA, pp. 445–452. IEEE Press, Los Alamitos (1999)
Silva, F.J.M., Sánchez Pérez, J.M., et al.: An Evolutionary Approach for Performing Multiple Sequence Alignment. In: WCCI 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, July 18-23, pp. 992–998 (2010)
Silva, F.J.M., Sánchez Pérez, J.M., et al.: A Niched Pareto Genetic Algorithm for Multiple Sequence Alignment Optimization. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) International Conference on Agents and Artificial Intelligence, Valencia, Spain, January 22-24, pp. 323–329. INSTICC Press (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
da Silva, F.J.M., Pérez, J.M.S., Pulido, J.A.G., Rodríguez, M.A.V. (2011). A Parallel Niched Pareto Evolutionary Algorithm for Multiple Sequence Alignment. In: Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (eds) 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011). Advances in Intelligent and Soft Computing, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19914-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-19914-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19913-4
Online ISBN: 978-3-642-19914-1
eBook Packages: EngineeringEngineering (R0)