Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 91))

  • 885 Accesses

Abstract

This study proposes the use of decision trees to detect possible complications in a critical disease called endocarditis. The endocarditis illness could produce heart failure, stroke, kidney failure, emboli, immunological disorders and death. The aim is to obtained a tree decision classifier based on the symptoms (attributes) of patients (the data instances) observed by doctors to predict the possible complications that can occur when a patient is in treatment of bacterial endocarditis and thus, help doctors to make an early diagnose so that they can treat more effectively the infection and aid to a patient faster recovery. The results obtained using a real data set, show that with the information extracted form each case in an early stage of the development of the patient a quite accurate idea of the complications that can arise can be extracted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Mitchell, T.M.: The Discipline of Machine Learning. Technical Report CMU-ML-06-108, School of Computer Science, Carnegie Mellon University (2006)

    Google Scholar 

  3. Esbensen, K.H., Geladi, P.: Principal Component Analysis: Concept, Geometrical Interpretation, Mathematical Background, Algorithms, History, Practice. In: Brown, S.D., Tauler, R., Walczak, B. (eds.) Comprehensive Chemometrics, pp. 211–226. Elsevier, Oxford (2009)

    Chapter  Google Scholar 

  4. Herrero, A., Corchado, E., Sáiz, L., Abraham, A.: DIPKIP: A connectionist knowledge management system to identify knowledge deficits in practical cases. Computational Intelligence 26(1), 26–56 (2010)

    Article  Google Scholar 

  5. Lorena, A.C., Ponce, A.C.: Evolutionary design of code-matrices for multiclass problems. In: Soft Computing for Knowledge Discovery and Data Mining, pp. 153–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Naldi, M.C., Ponce, A.C., Gabrielli, R.J., Hruschka, E.R.: Genetic clustering for data mining, vol. 2, pp. 113–132. Springer, Heidelberg (2008)

    Google Scholar 

  7. Berlanga, F.J., Rivera, A.J., Jesus, M.J., Herrera, F.: GP-COACH: Genetic Programming-based learning of Compact and Accurate fuzzy rule-based classification systems for High-dimensional problems. Information Science 180(8), 1183–1200 (2010)

    Article  Google Scholar 

  8. Das, S., Abraham, A., Konar, A.: Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm. Pattern Recognition Letters 29(5), 688–699 (2008)

    Article  Google Scholar 

  9. Lee, M.Y., Yang, C.S.: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Computers Methods and Programs in Biomedicine 100(3), 269–282 (2010)

    Article  Google Scholar 

  10. Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Information Sciences 180(10), 2029–2043 (2010); Special Issue on Intelligent Distributed Information Systems

    Article  Google Scholar 

  11. Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A Soft Computing Based Method for Detecting Lifetime Building Thermal Insulation Failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)

    Google Scholar 

  12. Sedano, J., Corchado, E., Curiel, L., Villar, J.R., Bravo, P.M.: The Application of a two-step AI Model to an Automated Pneumatic Drilling Process. International Journal of Computer Mathematics 86(10-11), 1769–1777 (2009)

    Article  MATH  Google Scholar 

  13. Plicht, B., Erbel, R.: Diagnosis and treatment of infective endocarditis. Current ESC guidelines. HERZ 35(8), 542–548 (2010)

    Article  Google Scholar 

  14. Plicht, B., Janosi, R.A., Buck, T., Erbel, R.: Infective endocarditis as cardiovascular emergency. HERZ 51(8), 987–994 (2010)

    Google Scholar 

  15. Quinlan, J.R.: Learning decision tree classifiers. ACM Computing Surveys (CSUR) 28(1), 71–72 (1996)

    Article  Google Scholar 

  16. Quinlan, J.R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  17. Kass, G.V.: An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics 29(2), 119–127 (1980)

    Article  Google Scholar 

  18. Morgan, J.N., Sonquist, J.A.: Problems in the Analysis of Survey Data and a Proposal. Journal of the American Statistical Association 58(3), 415–434 (2010)

    Article  Google Scholar 

  19. Colin, A.: Building Decision Trees with the ID3 Algorithm. Dr. Dobbs Journal (1996)

    Google Scholar 

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Machine Learning 16(3), 235–240 (1993)

    Google Scholar 

  21. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. Artificial Intelligence Communications-AICom 7(1), 39–59 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curiel, L., Baruque, B., Dueñas, C., Corchado, E., Pérez, C. (2011). Complications Detection in Treatment for Bacterial Endocarditis. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds) International Symposium on Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19934-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19934-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19933-2

  • Online ISBN: 978-3-642-19934-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics