Skip to main content

AREM: Aligning Short Reads from ChIP-Sequencing by Expectation Maximization

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

High-throughput sequencing coupled to chromatin immunoprecipitation (ChIP-Seq) is widely used in characterizing genome-wide binding patterns of transcription factors, cofactors, chromatin modifiers, and other DNA binding proteins. A key step in ChIP-Seq data analysis is to map short reads from high-throughput sequencing to a reference genome and identify peak regions enriched with short reads. Although several methods have been proposed for ChIP-Seq analysis, most existing methods only consider reads that can be uniquely placed in the reference genome, and therefore have low power for detecting peaks located within repeat sequences. Here we introduce a probabilistic approach for ChIP-Seq data analysis which utilizes all reads, providing a truly genome-wide view of binding patterns. Reads are modeled using a mixture model corresponding to K enriched regions and a null genomic background. We use maximum likelihood to estimate the locations of the enriched regions, and implement an expectation-maximization (E-M) algorithm, called AREM (aligning reads by expectation maximization), to update the alignment probabilities of each read to different genomic locations. We apply the algorithm to identify genome-wide binding events of two proteins: Rad21, a component of cohesin and a key factor involved in chromatid cohesion, and Srebp-1, a transcription factor important for lipid/cholesterol homeostasis. Using AREM, we were able to identify 19,935 Rad21 peaks and 1,748 Srebp-1 peaks in the mouse genome with high confidence, including 1,517 (7.6%) Rad21 peaks and 227 (13%) Srebp-1 peaks that were missed using only uniquely mapped reads. The open source implementation of our algorithm is available at http://sourceforge.net/projects/arem

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, P.: ChIP–seq: advantages and challenges of a maturing technology. Nature Reviews Genetics 10, 669–680 (2009)

    Article  Google Scholar 

  2. Mikkelsen, T., Ku, M., Jaffe, D., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T., Koche, R., et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007)

    Article  Google Scholar 

  3. Ouyang, Z., Zhou, Q., Wong, W.: ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proceedings of the National Academy of Sciences 106, 21521 (2009)

    Article  Google Scholar 

  4. Blow, M., McCulley, D., Li, Z., Zhang, T., Akiyama, J., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F., et al.: ChIP-Seq identification of weakly conserved heart enhancers. Nature Genetics 42, 806–810 (2010)

    Article  Google Scholar 

  5. Seo, Y., Chong, H., Infante, A., Im, S., Xie, X., Osborne, T.: Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proceedings of the National Academy of Sciences 106, 13765 (2009)

    Article  Google Scholar 

  6. Cox, A.J.: Efficient Large-Scale Alignment of Nucleotide Databases. Whole genome alignments to a reference genome (2007), http://bioinfo.cgrb.oregonstate.edu/docs/solexa

  7. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

    Article  Google Scholar 

  8. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research 18, 1851 (2008)

    Article  Google Scholar 

  9. Li, R., Li, Y., Kristiansen, K., Wang, J.: SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713 (2008)

    Article  Google Scholar 

  10. Fejes, A., Robertson, G., Bilenky, M., Varhol, R., Bainbridge, M., Jones, S.: FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24, 1729 (2008)

    Article  Google Scholar 

  11. Ji, H., Jiang, H., Ma, W., Johnson, D., Myers, R., Wong, W.: An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nature Biotechnology 26, 1293–1300 (2008)

    Article  Google Scholar 

  12. Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    Article  Google Scholar 

  13. Zhang, Y., Liu, T., Meyer, C., Eeckhoute, J., Johnson, D., Bernstein, B., Nussbaum, C., Myers, R., Brown, M., Li, W., et al.: Model-based analysis of ChIP-Seq (MACS). Genome Biology 9, R137 (2008)

    Article  Google Scholar 

  14. Spyrou, C., Stark, R., Lynch, A., Tavaré, S.: BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics 10, 299 (2009)

    Article  Google Scholar 

  15. Zang, C., Schones, D., Zeng, C., Cui, K., Zhao, K., Peng, W.: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952 (2009)

    Article  Google Scholar 

  16. Blahnik, K., Dou, L., O’Geen, H., McPhillips, T., Xu, X., Cao, A., Iyengar, S., Nicolet, C., Ludascher, B., Korf, I., et al.: Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Research 38, e13 (2010)

    Article  Google Scholar 

  17. Qin, Z., Yu, J., Shen, J., Maher, C., Hu, M., Kalyana-Sundaram, S., Yu, J., Chinnaiyan, A.: HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data. BMC Bioinformatics 11, 369 (2010)

    Article  Google Scholar 

  18. Salmon-Divon, M., Dvinge, H., Tammoja, K., Bertone, P.: PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci. BMC Bioinformatics 11, 415 (2010)

    Article  Google Scholar 

  19. Kharchenko, P., Tolstorukov, M., Park, P.: Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nature Biotechnology 26, 1351–1359 (2008)

    Article  Google Scholar 

  20. Pepke, S., Wold, B., Mortazavi, A.: Computation for ChIP-seq and RNA-seq studies. Nature Methods 6, S22–S32 (2009)

    Article  Google Scholar 

  21. Wilbanks, E., Facciotti, M.: Evaluation of Algorithm Performance in ChIP-Seq Peak Detection. PloS One 5, e11471 (2010)

    Article  Google Scholar 

  22. Kagey, M., Newman, J., Bilodeau, S., Zhan, Y., Orlando, D., van Berkum, N., Ebmeier, C., Goossens, J., Rahl, P., Levine, S., et al.: Mediator and cohesin connect gene expression and chromatin architecture. Nature (2010)

    Google Scholar 

  23. Schmid, C., Bucher, P.: MER41 Repeat Sequences Contain Inducible STAT1 Binding Sites. PloS One 5, e11425 (2010)

    Article  Google Scholar 

  24. Zeng, W., De Greef, J., Chen, Y., Chien, R., Kong, X., Gregson, H., Winokur, S., Pyle, A., Robertson, K., Schmiesing, J., et al.: Specific loss of histone H3 lysine 9 trimethylation and HP1γ/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD) (2009)

    Google Scholar 

  25. Rubio, E., Reiss, D., Welcsh, P., Disteche, C., Filippova, G., Baliga, N., Aebersold, R., Ranish, J., Krumm, A.: CTCF physically links cohesin to chromatin. Proceedings of the National Academy of Sciences 105, 8309 (2008)

    Article  Google Scholar 

  26. Liu, J., Zhang, Z., Bando, M., Itoh, T., Deardorff, M., Clark, D., Kaur, M., Tandy, S., Kondoh, T., Rappaport, E., et al.: Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009)

    Article  Google Scholar 

  27. Wendt, K., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Nagae, G., Ishihara, K., Mishiro, T., et al.: Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008)

    Article  Google Scholar 

  28. Nativio, R., Wendt, K., Ito, Y., Huddleston, J., Uribe-Lewis, S., Woodfine, K., Krueger, C., Reik, W., Peters, J., Murrell, A.: Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus (2009)

    Google Scholar 

  29. Hagen, R., Rodriguez-Cuenca, S., Vidal-Puig, A.: An allostatic control of membrane lipid composition by SREBP1. FEBS Letters (2010)

    Google Scholar 

  30. Yokoyama, C., Wang, X., Briggs, M., Admon, A., Wu, J., Hua, X., Goldstein, J., Brown, M.: SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75, 187–197 (1993)

    Article  Google Scholar 

  31. Huda, A., Jordan, I.: Epigenetic regulation of Mammalian genomes by transposable elements. Annals of the New York Academy of Sciences 1178, 276–284 (2009)

    Article  Google Scholar 

  32. Chuzhanova, N., Abeysinghe, S., Krawczak, M., Cooper, D.: Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Human Mutation 22, 245–251 (2003)

    Article  Google Scholar 

  33. Rhead, B., Karolchik, D., Kuhn, R., Hinrichs, A., Zweig, A., Fujita, P., Diekhans, M., Smith, K., Rosenbloom, K., Raney, B., et al.: The UCSC genome browser database: update 2010. Nucleic Acids Research (2009)

    Google Scholar 

  34. Boeva, V., Surdez, D., Guillon, N., Tirode, F., Fejes, A., Delattre, O., Barillot, E.: De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis. Nucleic Acids Research (2010)

    Google Scholar 

  35. Bailey, T., Elkan, C.: The value of prior knowledge in discovering motifs with MEME. In: Proc Int. Conf. Intell. Syst. Mol. Biol., vol. 3, pp. 21–29 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Newkirk, D., Biesinger, J., Chon, A., Yokomori, K., Xie, X. (2011). AREM: Aligning Short Reads from ChIP-Sequencing by Expectation Maximization. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics