Skip to main content

Experiment Specific Expression Patterns

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

  • 1242 Accesses

Abstract

The differential analysis of genes between microarrays from several experimental conditions or treatments routinely estimates which genes change significantly between groups. As genes are never regulated individually observed behavior may be a consequence of changes in other genes. Existing approaches like co-expression analysis aim to resolve such patterns from a wide range of experiments. The knowledge of such a background set of experiments can be used to compute expected gene behavior based on known links. It is particularly interesting to detect previously unseen specific effects in other experiments. Here, a new method to spot genes deviating from expected behavior (PAttern DEviation SCOring – Padesco ) is devised. It uses linear regression models learned from a background set to arrive at gene specific prediction accuracy distributions. For a given experiment it is then decided whether each gene is predicted better or worse than expected. This provides a novel way to estimate the experiment specificityof each gene. We propose a validation procedure to estimate the detection of such specific candidates and show that these can be identified with an average accuracy of about 85 percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30, 41–47 (2002)

    Article  Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), software http://www.csie.ntu.edu.tw/~cjlin/libsvm

  4. Chaussabel, D., Semnani, R.T., McDowell, M.A., Sacks, D., Sher, A., Nutman, T.B.: Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102(2), 672–681 (2003)

    Article  Google Scholar 

  5. Chen, Z., Li, J., Wei, L.: A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif. Intell. Med. 41(2), 161–175 (2007)

    Article  Google Scholar 

  6. Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A.: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology 4(5), P3 (2003)

    Article  Google Scholar 

  7. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl. Acids Res. 30(1), 207–210 (2002)

    Article  Google Scholar 

  8. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A 95, 14863–14868 (1998)

    Article  Google Scholar 

  9. Fabregat, I.: Dysregulation of apoptosis in hepatocellular carcinoma cells. World Journal of Gastroenterology: WJG 15(5), 513 (2009)

    Article  Google Scholar 

  10. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  11. Garrett-Mayer, E., Parmigiani, G., Zhong, X., Cope, L., Gabrielson, E.: Cross-study validation and combined analysis of gene expression microarray data. Biostatistics 9, 333–354 (2008)

    Article  MATH  Google Scholar 

  12. Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J., Zhang, J.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5, R80 (2004)

    Article  Google Scholar 

  13. Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., Botstein, D.: Imputing Missing Data for Gene Expression Arrays. Technical report, Stanford Statistics Department (1999)

    Google Scholar 

  14. Hautmann, S.H., Huland, E., Huland, H.: Local intratumor immunotherapy of prostate cancer with interleukin-2 reduces tumor growth. Anticancer Res. 19(4A), 2661–2663 (1999)

    Google Scholar 

  15. Hirsch, H.A., Iliopoulos, D., Joshi, A., Zhang, Y., Jaeger, S.A., Bulyk, M., Tsichlis, P.N., Liu, X.S., Struhl, K.: A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17(4), 348–361 (2010)

    Article  Google Scholar 

  16. Hong, D., Lee, J., Hong, S., Yoon, J., Park, S.: Extraction of Informative Genes from Integrated Microarray Data. Springer, Heidelberg (2008)

    Book  Google Scholar 

  17. Hu, J., Li, H., Waterman, M., Zhou, X.: Integrative missing value estimation for microarray data. BMC Bioinformatics 7, 449 (2006)

    Article  Google Scholar 

  18. Huang, D.W., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1), 44–57 (2009)

    Article  Google Scholar 

  19. Khan, I., Murphy, P., Casciotti, L., Schwartzman, J., Collins, J., Gao, J., Yeaman, G.: Mice lacking the chemokine receptor CCR1 show increased susceptibility to Toxoplasma gondii infection. The Journal of Immunology 166(3), 1930 (2001)

    Article  Google Scholar 

  20. Kim, H., Golub, G.H., Park, H.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2), 187–198 (2005)

    Article  Google Scholar 

  21. Kostka, D., Spang, R.: Finding disease specific alterations in the co-expression of genes. Bioinformatics 20(Suppl 1), i194–i199 (2004)

    Article  Google Scholar 

  22. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J., Pavlidis, P.: Coexpression analysis of human genes across many microarray data sets. Genome Research 14(6), 1085–1094 (2004)

    Article  Google Scholar 

  23. Monteith, G., McAndrew, D., Faddy, H., Roberts-Thomson, S.: Calcium and cancer: targeting Ca2+ transport. Nature Reviews Cancer 7(7), 519–530 (2007)

    Article  Google Scholar 

  24. Moody, D.B., Robinson, J.C., Ewing, C.M., Lazenby, A.J., Isaacs, W.B.: Interleukin-2 transfected prostate cancer cells generate a local antitumor effect in vivo. Prostate 24(5), 244–251 (1994)

    Article  Google Scholar 

  25. Otter, W.D., Jacobs, J.J.L., Battermann, J.J., Hordijk, G.J., Krastev, Z., Moiseeva, E.V., Stewart, R.J.E., Ziekman, P.G.P.M., Koten, J.W.: Local therapy of cancer with free IL-2. Cancer Immunol. Immunother. 57(7), 931–950 (2008)

    Article  Google Scholar 

  26. Prieto, C., Rivas, M.J., Sánchez, J.M., López-Fidalgo, J., Rivas, J.D.L.: Algorithm to find gene expression profiles of deregulation and identify families of disease-altered genes. Bioinformatics 22(9), 1103–1110 (2006)

    Article  Google Scholar 

  27. Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh, D., Chinnaiyan, A.M.: Meta-Analysis of Microarrays: Interstudy Validation of Gene Expression Profiles Reveals Pathway Dysregulation in Prostate Cancer. Cancer Res. 62(15), 4427–4433 (2002)

    Google Scholar 

  28. Roderick, H.L., Cook, S.J.: Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8(5), 361–375 (2008)

    Article  Google Scholar 

  29. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (December 2001)

    Google Scholar 

  30. Schölkopf, B., Tsuda, K., Vert, J.: Kernel Methods in Computational Biology (Computational Molecular Biology). The MIT Press, Cambridge (2004)

    Google Scholar 

  31. Segal, E., Friedman, N., Koller, D., Regev, A.: A module map showing conditional activity of expression modules in cancer. Nat. Genet. 36(10), 1090–1098 (2004)

    Article  Google Scholar 

  32. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

  33. Smith, P., Hobisch, A., Lin, D., Culig, Z., Keller, E.: Interleukin-6 and prostate cancer progression. Cytokine & Growth Factor Reviews 12(1), 33–40 (2001)

    Article  Google Scholar 

  34. Smola, A., Schölkopf, B.: A tutorial on support vector regression. Technical Report NC2-TR-1998-030, NeuroCOLT2 (1998)

    Google Scholar 

  35. Ucar, D., Neuhaus, I., Ross-MacDonald, P., Tilford, C., Parthasarathy, S., Siemers, N., Ji, R.-R.: Construction of a reference gene association network from multiple profiling data: application to data analysis. Bioinformatics 23(20), 2716–2724 (2007)

    Article  Google Scholar 

  36. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, Hoboken (September 1998)

    MATH  Google Scholar 

  37. Veer, V.L., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)

    Article  Google Scholar 

  38. Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nature Medicine 10(8), 789–799 (2004)

    Article  Google Scholar 

  39. Wang, X., Li, A., Jiang, Z., Feng, H.: Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme. BMC Bioinformatics 7(1), 32 (2006)

    Article  Google Scholar 

  40. Welsh, J.B., Sapinoso, L.M., Su, A.I., Kern, S.G., Wang-Rodriguez, J., Moskaluk, C.A., Frierson, J., Henry, F., Hampton, G.M.: Analysis of Gene Expression Identifies Candidate Markers and Pharmacological Targets in Prostate Cancer. Cancer Res. 61(16), 5974–5978 (2001)

    Google Scholar 

  41. Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6), 80–83 (1945)

    Article  Google Scholar 

  42. Yoon, H., Liyanarachchi, S., Wright, F.A., Davuluri, R., Lockman, J.C., de la Chapelle, A., Pellegata, N.S.: Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. PNAS USA 99(24), 15632–15637 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petri, T., Küffner, R., Zimmer, R. (2011). Experiment Specific Expression Patterns. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics