Skip to main content

Investigation of Bagging Ensembles of Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6592))

Included in the following conference series:

Abstract

Artificial neural networks are often used to generate real appraisal models utilized in automated valuation systems. Neural networks are widely recognized as weak learners therefore are often used to create ensemble models which provide better prediction accuracy. In the paper the investigation of bagging ensembles combining genetic neural networks as well as genetic fuzzy systems is presented. The study was conducted with a newly developed system in Matlab to generate and test hybrid and multiple models of computational intelligence using different resampling methods. The results of experiments showed that genetic neural network and fuzzy systems ensembles outperformed a pairwise comparison method used by the experts to estimate the values of residential premises over majority of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagnoli, C., Smith, H.C.: The Theory of Fuzzy Logic and its Application to Real Estate Valuation. Journal of Real Estate Research 16(2), 169–199 (1998)

    Google Scholar 

  2. Borra, S., Di Ciaccio, A.: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Computational Statistics & Data Analysis 54(12), 2976–2989 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Büchlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics 29(6), 703–715 (1999)

    Article  Google Scholar 

  7. Czuczwara, K.: Comparative analysis of selected evolutionary algorithms for optimization of neural network architectures. Master’s Thesis, Wrocław University of Technology, Wrocław, Poland (2010) (in Polish)

    Google Scholar 

  8. Efron, B., Tibshirani, R.J.: Improvements on cross-validation: the.632+ bootstrap method. Journal of the American Statistical Association 92(438), 548–560 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Friedman, J.H., Hall, P.: On bagging and nonlinear estimation. Journal of Statistical Planning and Inference 137(3), 669–683 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fumera, G., Roli, F., Serrau, A.: A theoretical analysis of bagging as a linear combination of classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1293–1299 (2008)

    Article  Google Scholar 

  11. González, M.A.S., Formoso, C.T.: Mass appraisal with genetic fuzzy rule-based systems. Property Management 24(1), 20–30 (2006)

    Article  Google Scholar 

  12. Góral, M.: Comparative analysis of selected evolutionary algorithms for optimization of fuzzy models for real estate appraisals. Master’s Thesis, Wrocław University of Technology, Wrocław, Poland (2010) (in Polish)

    Google Scholar 

  13. Graczyk, M., Lasota, T., Trawiński, B.: Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 800–812. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J., et al. (eds.) Intelligent Information and Database Systems. LNCS (LNAI), vol. 5991, pp. 340–350. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Kim, D., Kim, H., Chung, D.: A Modified Genetic Algorithm for Fast Training Neural Networks. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 660–665. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Kontrimas, V., Verikas, A.: The mass appraisal of the real estate by computational intelligence. Applied Soft Computing 11(1), 443–448 (2011)

    Article  Google Scholar 

  17. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    Article  MATH  Google Scholar 

  18. Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS (LNAI), vol. 5991, pp. 330–339. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Lasota, T., Mazurkiewicz, J., Trawiński, B., Trawiński, K.: Comparison of Data Driven Models for the Validation of Residential Premises using KEEL. International Journal of Hybrid Intelligent Systems 7(1), 3–16 (2010)

    Article  MATH  Google Scholar 

  20. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of Bagging Ensembles Comprising Genetic Fuzzy Models to Assist with Real Estate Appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing (2011) (in print)

    Google Scholar 

  22. Lewis, O.M., Ware, J.A., Jenkins, D.: A novel neural network technique for the valuation of residential property. Neural Computing & Applications 5(4), 224–229 (1997)

    Article  Google Scholar 

  23. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises (2011) (to be published)

    Google Scholar 

  24. Martínez-Muñoz, G., Suárez, A.: Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognition 43, 143–152 (2010)

    Article  MATH  Google Scholar 

  25. Molinaro, A.N., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Article  Google Scholar 

  26. Peterson, S., Flangan, A.B.: Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal. Journal of Real Estate Research 31(2), 147–164 (2009)

    Google Scholar 

  27. Polikar, R.: Ensemble Learning. Scholarpedia 4(1), 2776 (2009)

    Article  Google Scholar 

  28. Schapire, R.E.: The Strength of Weak Learnability. Mach. Learning 5(2), 197–227 (1990)

    Google Scholar 

  29. Worzala, E., Lenk, M., Silva, A.: An Exploration of Neural Networks and Its Application to Real Estate Valuation. The Journal of Real Estate Research 10(2), 185–201 (1995)

    Google Scholar 

  30. Yao, X.: Evolving artificial neural networks. Proc. of the IEEE 87(9), 1423–1444 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kempa, O., Lasota, T., Telec, Z., Trawiński, B. (2011). Investigation of Bagging Ensembles of Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20042-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20042-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20041-0

  • Online ISBN: 978-3-642-20042-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics