Skip to main content

Syntactic Tree Kernels for Event-Time Temporal Relation Learning

  • Conference paper
Human Language Technology. Challenges for Computer Science and Linguistics (LTC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6562))

Included in the following conference series:

  • 1146 Accesses

Abstract

Temporal relation classification is one of the contemporary demanding tasks in natural language processing. This task can be used in various applications such as question answering, summarization, and language specific information retrieval. In this paper, we propose an improved algorithm for classifying temporal relations between events and times, using support vector machines (SVM). Along with gold-standard corpus features, the proposed method aims at exploiting useful syntactic features, which are automatically generated, to improve accuracy of the classification. Accordingly, a number of novel kernel functions are introduced and evaluated for temporal relation classification. The result of experiments clearly shows that adding syntactic features results in a notable performance improvement over the state of the art method, which merely employs gold-standard features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mani, I., Marc, V., Wellner, B., Lee, C.M., Pustejovsky, J.: Machine Learning of Temporal Relations. In: ACL, vol. 44, pp. 753–760 (2006)

    Google Scholar 

  2. Tatu, M., Srikanth, M.: Experiments with Reasoning for Temporal Relations between Events. In: Coling 2008, pp. 857–864 (2008)

    Google Scholar 

  3. Khayyamian, M., Mirroshandel, S.A., Abolhassani, H.: Syntactic Tree-based Relation Extraction Using a Generalization of Collins and Duffy Convolution Tree Kernel. In: HLT/NAACL 2009, pp. 66–71 (2009)

    Google Scholar 

  4. Chklovski, T., Pantel, P.: Global path-based refinement of noisy graphs applied to verb semantics. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS (LNAI), vol. 3651, pp. 792–803. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Abe, S., Inui, K., Matsumoto, Y.: Two-Phased Event Relation Acquisition Coupling the Relation-Oriented and Argument-Oriented Approaches. In: Coling 2008, pp. 1–8 (2008)

    Google Scholar 

  6. Chambers, N., Wang, S., Jurafsky, D.: Classifying Temporal Relations between Events. In: ACL, vol. 45, pp. 173–176 (2007)

    Google Scholar 

  7. Lapata, M., Lascarides, A.: Learning Sentence-Internal Temporal Relations. Journal of Artificial Intelligence Research 27, 85–117 (2006)

    MATH  Google Scholar 

  8. Allen, J.F.: Towards a General Theory of Action and Time. Artificial Intelligence 23, 123–154 (1984)

    Article  MATH  Google Scholar 

  9. Harris, Z.: Mathematical Structure of Language. John Wiley Sons, New York (1968)

    MATH  Google Scholar 

  10. Lin, D., Pantel, P.: Dirt - Discovery of Inference Rules From Text. In: The 7th ACM SIGKDD, pp. 323–328 (2001)

    Google Scholar 

  11. Szpektor, I., Tanev, H., Dagan, I.: Scaling Web-based Acquisition of Entailment Relations. In: EMNLP 2004, pp. 41–48 (2004)

    Google Scholar 

  12. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A Training Algorithm for Optimal Margin Classifiers. In: COLT 1992, pp. 144–152. ACM, New York (1992)

    Google Scholar 

  13. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning, 273–297 (1995)

    Google Scholar 

  14. Collins, M., Duffy, N.: Convolution Kernels for Natural Language. In: Advances in Neural Information Processing Systems, vol. 14, pp. 625–632. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Zhang, M., Zhang, J., Su, J., Zhou, G.D.: A Composite Kernel to Extract Relations between Entities with Both Flat and Structured Features. In: ACL, vol. 44, pp. 825–832 (2006)

    Google Scholar 

  16. Pustejovsky, J., Hanks, P., Sauri, R., See, A., Gaizauskas, R., Setzer, A., Radev, D., Sundheim, B., Day, D., Ferro, L., Lazo, M.: The TIMEBANK Corpus. In: Corpus Linguistics 2003, pp. 647–656 (2003)

    Google Scholar 

  17. Mani, I., Wellner, B., Verhagen, M., Pustejovsky, J.: Three Approaches to Learning Tlinks in TimeML. In Technical Report CS-07-268. Brandeis University, Waltham, USA (2007)

    Google Scholar 

  18. Chang, C. C., Lin, C.J.: Libsvm: a Library For Support Vector Machines (2001), software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  19. Stanford NLP Package, http://nlp.stanford.edu/software/index.shtml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirroshandel, S.A., Khayyamian, M., Ghassem-Sani, G. (2011). Syntactic Tree Kernels for Event-Time Temporal Relation Learning. In: Vetulani, Z. (eds) Human Language Technology. Challenges for Computer Science and Linguistics. LTC 2009. Lecture Notes in Computer Science(), vol 6562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20095-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20095-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20094-6

  • Online ISBN: 978-3-642-20095-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics