Abstract
Periodic-frequent patterns are a class of user-interest-based frequent patterns that exist in a transactional database. A frequent pattern can be said periodic-frequent if it appears at a regular user-specified interval in a database. In the literature, an approach has been proposed to extract periodic-frequent patterns that occur periodically throughout the database. However, it is generally difficult for a frequent pattern to appear periodically throughout the database without any interruption in many real-world applications. In this paper, we propose an improved approach by introducing a new interestingness measure to discover periodic-frequent patterns that occur almost periodically in the database. A pattern-growth algorithm has been proposed to discover the complete set of periodic-frequent patterns. Experimental results show that the proposed model is effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD 1993: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM, New York (1993)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)
Kiran, R.U., Reddy, P.K.: Towards efficient mining of periodic-frequent patterns in transactional databases. In: DEXA, vol. (2), pp. 194–208 (2010)
Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kiran, R.U., Reddy, P.K. (2011). An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-20149-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20148-6
Online ISBN: 978-3-642-20149-3
eBook Packages: Computer ScienceComputer Science (R0)