Abstract
It is critical to manage uncertain data streams nowadays because data uncertainty widely exists in many applications, such as Web and sensor networks. The goal of this paper is to handle top-k query on uncertain data streams. Since the volume of a data stream is unbounded whereas the memory resource is limited, it is challenging to devise one-pass solutions that is both time- and space efficient. We have devised two structures to handle this issue, namely domGraph and probTree. The domGraph stores all candidate tuples, and the probTree is helpful to compute the expected rank of a tuple. The analysis in theory and extensive experimental results show the effectiveness and efficiency of the proposed solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C.: Managing and mining uncertain data. Springer, Heidelberg (2009)
Aggarwal, C.C., Yu, P.S.: A framework for clustering uncertain data streams. In: Proc. of ICDE (2008)
Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Proc. of VLDB (2006)
Antova, L., Koch, C., Olteanu, D.: From complete to incomplete information and back. In: Proc. of SIGMOD (2007)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, pp. 265–268. The MIT Press, Cambridge (2001)
Cormode, G., Garofalakis, M.: Sketching probabilistic data streams. In: Proc. of ACM SIGMOD (2007)
Cormode, G., Korn, F., Tirthapura, S.: Exponentially decayed aggregates on data streams. In: Proc. of ICDE (2008)
Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data and expected ranks. In: Proc. of ICDE (2009)
Cormode, G., Tirthapura, S., Xu, B.: Time-decaying sketches for sensor data aggregation. In: Proc. of PODC (2007)
Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB Journal 16(4), 523–544 (2007)
Ge, T., Zdonik, S., Madden, S.: Top-k queries on uncertain data: On score distribution and typical answers. In: Proc. of SIGMOD (2009)
Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: A probabilistic threshold approach. In: Proc. of SIGMOD (2008)
Jayram, T., Kale, S., Vee, E.: Efficient aggregation algorithms for probabilistic data. In: Proc. of SODA (2007)
Jayram, T., McGregor, A., Muthukrishnan, S., Vee, E.: Estimating statistical aggregates on probabilistic data streams. In: Proc. of PODS (2007)
Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-window top-k queries on uncertain streams. Proc. of the VLDB Endowment 1(1), 301–312 (2008)
Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic databases. In: Proc. of VLDB (2009)
Soliman, M.A., Ilyas, I.F.: Ranking with uncertain scores. In: Proc. of ICDE (2009)
Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain databases. In: Proc. of ICDE (2007)
Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Proc. of SIGMOD (2008)
Zhang, X., Chomicki, J.: On the semantics and evaluation of top-k queries in probabilistic databases. In: Proc. of DBRank (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jin, C., Gao, M., Zhou, A. (2011). Handling ER-topk Query on Uncertain Streams. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-20149-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20148-6
Online ISBN: 978-3-642-20149-3
eBook Packages: Computer ScienceComputer Science (R0)