Skip to main content

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6587))

Included in the following conference series:

  • 1407 Accesses

Abstract

XML clustering finds many applications, ranging from storage to query processing. However, existing clustering algorithms focus on static XML collections, whereas modern information systems frequently deal with streaming XML data that needs to be processed online. Streaming XML clustering is a challenging task because of the high computational and space efficiency requirements implicated for online approaches. In this paper we propose XStreamCluster, which addresses the two challenges using a two-layered optimization. The bottom layer employs Bloom filters to encode the XML documents, providing a space-efficient solution to memory usage. The top layer is based on Locality Sensitive Hashing and contributes to the computational efficiency. The theoretical analysis shows that the approximate solution of XStreamCluster generates similarly good clusters as the exact solution, with high probability. The experimental results demonstrate that XStreamCluster improves both memory efficiency and computational time by at least an order of magnitude without affecting clustering quality, compared to its variants and a baseline approach.

This work is partially supported by the FP7 EU Project GLOCAL (contract no. 248984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mayorga, V., Polyzotis, N.: Sketch-based summarization of ordered XML streams. In: Proc. of ICDE (2009)

    Google Scholar 

  2. Josifovski, V., Fontoura, M., Barta., A.: Querying XML streams. VLDB Journal 14(2) (2005)

    Google Scholar 

  3. Bifet, A., Gavald, R.: Adaptive XML tree classification on evolving data streams. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 147–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.: A methodology for clustering XML documents by structure. Inf. Syst. 31(3), 187–228 (2006)

    Article  MATH  Google Scholar 

  5. Lian, W., Cheung, D.W.L., Mamoulis, N., Yiu, S.M.: An efficient and scalable algorithm for clustering XML documents by structure. IEEE TKDE 16(1), 82–96 (2004)

    Google Scholar 

  6. Nierman, A., Jagadish, H.V.: Evaluatating structural similarity in XML documents. In: Proc. of ACM SIGMOD WebDB Workshop, pp. 61–66 (2002)

    Google Scholar 

  7. Tagarelli, A., Greco, S.: Toward semantic XML clustering. In: Proc. SDM (2006)

    Google Scholar 

  8. Aggarwal, C.C.: A framework for clustering massive-domain data streams. In: Proc. of IEEE ICDE (2009)

    Google Scholar 

  9. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  10. Kaufman, L., Rousseuw, P.: Finding groups in data - An introduction to cluster analysis. Wiley, Chichester (1990)

    Google Scholar 

  11. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proc. of VLDB (2003)

    Google Scholar 

  12. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: Proc. of IEEE FOCS (2000)

    Google Scholar 

  13. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data algorithms for high-quality clustering. In: Proc. of ICDE (2002)

    Google Scholar 

  14. Candillier, L., Tellier, I., Torre, F.: Transforming XML trees for efficient classification and clustering. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 469–480. Springer, Heidelberg (2006)

    Google Scholar 

  15. Doucet, A., Ahonen Myka, H.: Naive clustering of a large XML document collection. In: INEX, pp. 81–87 (2002)

    Google Scholar 

  16. Doucet, A., Lehtonen, M.: Unsupervised classification of text-centric XML document collections. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 497–509. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Papapetrou, O., Chen, L.: XStreamCluster: an Efficient Algorithm for Streaming XML data Clustering. Technical report (2010), http://www.l3s.de/~papapetrou/publications/XStreamCluster-long.pdf

  18. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proc. of VLDB (1999)

    Google Scholar 

  19. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. In: Proc. of STOC 1998, pp. 327–336. ACM, New York (1998)

    Google Scholar 

  20. Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic length adaptation for bloom filters. DAPD 28(1) (2010)

    Google Scholar 

  21. Diaz, A.L., Lovell, D.: XML generator (1999), http://www.alphaworks.ibm.com/tech/xmlgenerator

  22. Christopher, D., Manning, P.R., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papapetrou, O., Chen, L. (2011). XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20149-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20148-6

  • Online ISBN: 978-3-642-20149-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics