Abstract
XML clustering finds many applications, ranging from storage to query processing. However, existing clustering algorithms focus on static XML collections, whereas modern information systems frequently deal with streaming XML data that needs to be processed online. Streaming XML clustering is a challenging task because of the high computational and space efficiency requirements implicated for online approaches. In this paper we propose XStreamCluster, which addresses the two challenges using a two-layered optimization. The bottom layer employs Bloom filters to encode the XML documents, providing a space-efficient solution to memory usage. The top layer is based on Locality Sensitive Hashing and contributes to the computational efficiency. The theoretical analysis shows that the approximate solution of XStreamCluster generates similarly good clusters as the exact solution, with high probability. The experimental results demonstrate that XStreamCluster improves both memory efficiency and computational time by at least an order of magnitude without affecting clustering quality, compared to its variants and a baseline approach.
This work is partially supported by the FP7 EU Project GLOCAL (contract no. 248984).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mayorga, V., Polyzotis, N.: Sketch-based summarization of ordered XML streams. In: Proc. of ICDE (2009)
Josifovski, V., Fontoura, M., Barta., A.: Querying XML streams. VLDB Journal 14(2) (2005)
Bifet, A., Gavald, R.: Adaptive XML tree classification on evolving data streams. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 147–162. Springer, Heidelberg (2009)
Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.: A methodology for clustering XML documents by structure. Inf. Syst. 31(3), 187–228 (2006)
Lian, W., Cheung, D.W.L., Mamoulis, N., Yiu, S.M.: An efficient and scalable algorithm for clustering XML documents by structure. IEEE TKDE 16(1), 82–96 (2004)
Nierman, A., Jagadish, H.V.: Evaluatating structural similarity in XML documents. In: Proc. of ACM SIGMOD WebDB Workshop, pp. 61–66 (2002)
Tagarelli, A., Greco, S.: Toward semantic XML clustering. In: Proc. SDM (2006)
Aggarwal, C.C.: A framework for clustering massive-domain data streams. In: Proc. of IEEE ICDE (2009)
Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)
Kaufman, L., Rousseuw, P.: Finding groups in data - An introduction to cluster analysis. Wiley, Chichester (1990)
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proc. of VLDB (2003)
Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: Proc. of IEEE FOCS (2000)
O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data algorithms for high-quality clustering. In: Proc. of ICDE (2002)
Candillier, L., Tellier, I., Torre, F.: Transforming XML trees for efficient classification and clustering. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 469–480. Springer, Heidelberg (2006)
Doucet, A., Ahonen Myka, H.: Naive clustering of a large XML document collection. In: INEX, pp. 81–87 (2002)
Doucet, A., Lehtonen, M.: Unsupervised classification of text-centric XML document collections. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS, vol. 4518, pp. 497–509. Springer, Heidelberg (2007)
Papapetrou, O., Chen, L.: XStreamCluster: an Efficient Algorithm for Streaming XML data Clustering. Technical report (2010), http://www.l3s.de/~papapetrou/publications/XStreamCluster-long.pdf
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proc. of VLDB (1999)
Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. In: Proc. of STOC 1998, pp. 327–336. ACM, New York (1998)
Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic length adaptation for bloom filters. DAPD 28(1) (2010)
Diaz, A.L., Lovell, D.: XML generator (1999), http://www.alphaworks.ibm.com/tech/xmlgenerator
Christopher, D., Manning, P.R., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Papapetrou, O., Chen, L. (2011). XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-20149-3_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20148-6
Online ISBN: 978-3-642-20149-3
eBook Packages: Computer ScienceComputer Science (R0)