Abstract
In this paper, we study a new type of spatial query, namely aggregate k farthest neighbor (AkFN) search. Given a data point set P, a query point set Q, an AkFN query returns k points in P with the largest aggregate distances to all points in Q. For instance, it is reasonable to build a new hotel where the aggregate distances to all existing hotels are maximized to reduce competition. Our investigation of AkFN queries focuses on three aggregate functions, namely Sum, Max and Min. Assuming that the data set is indexed by R-tree, we propose two algorithms, namely minimum bounding (MB) and best first (BF), for efficiently solving AkFN queries with all three aggregate functions. The BF algorithm is incremental and IO optimal. Extensive experiments on both synthetic and real data sets confirm the efficiency and effectiveness of our proposed algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)
Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)
Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD Conference, pp. 71–79 (1995)
Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)
Aggarwal, A., Kravets, D.: A linear time algorithm for finding all farthest neighbors in a convex polygon. Inf. Process. Lett. 31(1), 17–20 (1989)
Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39(2), 220–235 (1989)
Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theor. Comput. Sci. 296(1), 47–58 (2003)
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)
Turkiyyah, G.: Foundations of multidimensional and metric data structures, p. 1024. Morgan Kaufmann, San Francisco (2006); ISBN 978-0-12-369446-1; Computer-Aided Design, vol. 40(4), pp. 518–519 (2008)
Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312 (2004)
Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group visible nearest neighbor queries in spatial databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 333–344. Springer, Heidelberg (2010)
Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor queries. IEEE Trans. Knowl. Data Eng. 22(5), 665–681 (2010)
Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. IEEE Trans. Knowl. Data Eng. 20(6), 809–824 (2008)
Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)
Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In: ICDE, pp. 664–675 (2009)
Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: An efficient and robust access method for points and rectangles. In: SIGMOD Conference, pp. 322–331 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, Y., Shou, L., Chen, K., Chen, G. (2011). Aggregate Farthest-Neighbor Queries over Spatial Data. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20152-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-20152-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20151-6
Online ISBN: 978-3-642-20152-3
eBook Packages: Computer ScienceComputer Science (R0)