Skip to main content

Aggregate Farthest-Neighbor Queries over Spatial Data

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6588))

Included in the following conference series:

  • 1185 Accesses

Abstract

In this paper, we study a new type of spatial query, namely aggregate k farthest neighbor (AkFN) search. Given a data point set P, a query point set Q, an AkFN query returns k points in P with the largest aggregate distances to all points in Q. For instance, it is reasonable to build a new hotel where the aggregate distances to all existing hotels are maximized to reduce competition. Our investigation of AkFN queries focuses on three aggregate functions, namely Sum, Max and Min. Assuming that the data set is indexed by R-tree, we propose two algorithms, namely minimum bounding (MB) and best first (BF), for efficiently solving AkFN queries with all three aggregate functions. The BF algorithm is incremental and IO optimal. Extensive experiments on both synthetic and real data sets confirm the efficiency and effectiveness of our proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

    Article  Google Scholar 

  2. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)

    Article  Google Scholar 

  3. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD Conference, pp. 71–79 (1995)

    Google Scholar 

  4. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)

    Article  Google Scholar 

  5. Aggarwal, A., Kravets, D.: A linear time algorithm for finding all farthest neighbors in a convex polygon. Inf. Process. Lett. 31(1), 17–20 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39(2), 220–235 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theor. Comput. Sci. 296(1), 47–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)

    Google Scholar 

  9. Turkiyyah, G.: Foundations of multidimensional and metric data structures, p. 1024. Morgan Kaufmann, San Francisco (2006); ISBN 978-0-12-369446-1; Computer-Aided Design, vol. 40(4), pp. 518–519 (2008)

    Google Scholar 

  10. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312 (2004)

    Google Scholar 

  11. Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group visible nearest neighbor queries in spatial databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 333–344. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor queries. IEEE Trans. Knowl. Data Eng. 22(5), 665–681 (2010)

    Article  Google Scholar 

  13. Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. IEEE Trans. Knowl. Data Eng. 20(6), 809–824 (2008)

    Article  Google Scholar 

  14. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  15. Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In: ICDE, pp. 664–675 (2009)

    Google Scholar 

  16. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: An efficient and robust access method for points and rectangles. In: SIGMOD Conference, pp. 322–331 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Y., Shou, L., Chen, K., Chen, G. (2011). Aggregate Farthest-Neighbor Queries over Spatial Data. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20152-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20152-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20151-6

  • Online ISBN: 978-3-642-20152-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics