Abstract
Continuous monitoring of spatial queries has gained significant research attention in the past few years. Although numerous algorithms have been proposed to solve specific queries, there does not exist a unified algorithm that solves a broad class of spatial queries. In this paper, we first define a versatile top-k query and show that various important spatial queries can be modeled to a versatile top-k query by defining a suitable scoring function. Then, we propose an efficient algorithm to continuously monitor the versatile top-k queries. To show the effectiveness of our proposed approach, we model various inherently different spatial queries to the versatile top-k query and conduct experiments to show the efficiency of our unified algorithm. The extensive experimental results demonstrate that our unified algorithm is several times faster than the existing best known algorithms for monitoring constrained k nearest neighbors queries, furthest k neighbors queries and aggregate k nearest neighbors queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bae, S.W., Korman, M., Tokuyama, T.: All farthest neighbors in the presence of highways and obstacles. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 71–82. Springer, Heidelberg (2009)
Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6(2), 153–180 (2002)
Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-guarded safe zone: An effective technique to monitor moving circular range queries. In: ICDE, pp. 189–200 (2010)
Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An efficient technique to continuously monitoring reverse knn. VLDB 2(1), 1138–1149 (2009)
Cheema, M.A., Yuan, Y., Lin, X.: CircularTrip: An effective algorithm for continuous kNN queries. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 863–869. Springer, Heidelberg (2007)
Chen, Z., Ness, J.W.V.: Characterizations of nearest and farthest neighbor algorithms by clustering admissibility conditions. Pattern Recognition 31(10), 1573–1578 (1998)
Ferhatosmanoglu, H., Stanoi, I., Agrawal, D.P., Abbadi, A.E.: Constrained nearest neighbor queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 257–278. Springer, Heidelberg (2001)
Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries on moving objects in a mobile system. In: EDBT, pp. 67–87 (2004)
Hasan, M., Cheema, M.A., Qu, W., Lin, X.: Efficient algorithms to monitor continuous constrained k nearest neighbor queries. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 233–249. Springer, Heidelberg (2010)
Henrich, A.: A distance scan algorithm for spatial access structures. In: ACM-GIS, pp. 136–143 (1994)
Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 83–95. Springer, Heidelberg (1995)
Lazaridis, I., Porkaew, K., Mehrotra, S.: Dynamic queries over mobile objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 269–286. Springer, Heidelberg (2002)
Luo, Y., Chen, H., Furuse, K., Ohbo, N.: Efficient methods in finding aggregate nearest neighbor by projection-based filtering. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 821–833. Springer, Heidelberg (2007)
Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient method for continuous nearest neighbor monitoring. In: SIGMOD, pp. 634–645 (2005)
Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)
Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp. 71–79 (1995)
Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39(2), 220–235 (1989)
Wu, K.L., Chen, S.K., Yu, P.S.: Incremental processing of continual range queries over moving objects. IEEE Trans. Knowl. Data Eng. 18(11), 1560–1575 (2006)
Wu, W., Tan, K.L.: isee: Efficient continuous k-nearest-neighbor monitoring over moving objects. In: SSDBM, p. 36 (2007)
Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)
Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)
Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE, pp. 631–642 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hasan, M., Cheema, M.A., Lin, X., Zhang, W. (2011). A Unified Algorithm for Continuous Monitoring of Spatial Queries. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20152-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-20152-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20151-6
Online ISBN: 978-3-642-20152-3
eBook Packages: Computer ScienceComputer Science (R0)